Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.5

Differential Equations of First Order and First Degree Solved Problems

Example. 1. Solve \(\left(x y^2-x^2\right) d x+\left(3 x^2 y^2+x^2 y-2 x^3+y^2\right) d y=0\)

Solution.

Given equation is \(\left(x y^2-x^2\right) d x+\left(3 x^2 y^2+x^2 y-2 x^3+y^2\right) d y=0\) ……………..(1)

where \(\mathrm{M}=x y^2-x^2, \mathrm{~N}=3 x^2 y^2+x^2 y-2 x^3+y^2\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=2 x y, \frac{\partial \mathrm{N}}{\partial x}\)

= \(6 x y^2+2 x y-6 x^2 \Rightarrow \frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\) => (1) is not an exact equation.

But \(\frac{1}{M}\left(\frac{\partial \mathrm{N}}{\partial x}-\frac{\partial \mathrm{M}}{\partial y}\right)\)

= \(\frac{1}{x y^2-x^2}\left(6 x y^2+2 x y-6 x^2-2 x y\right)=\frac{1}{x y^2-x^2} \cdot 6\left(x y^2-x^2\right)=6K\)

∴ I.F = \(e^{\int 6 d y}=e^{6 y}\) Multiplying (1) by \(e^{6 y} \Rightarrow\left(x y^2-x^2\right) e^{6 y} d x+\left(3 x^2 y^2+x^2 y-2 x^3+y^2\right) e^{6 y} d y=0\) …………………(2)

(2) is an exact equation where \(\mathrm{M}_1=\left(x y^2-x^2\right) e^{6 y} \text { and } \mathrm{N}_1=\left(3 x^2 y^2+x^2 y-2 x^3+y^2\right) e^{6 y}\) since \(\frac{\partial \mathrm{M}_1}{\partial y}=\frac{\partial \mathrm{N}_1}{\partial x}\)  (verify)

(1) Integrating \(\mathrm{M}_1\) w.r.t. x, treating y as constant.

⇒ \(\int^x \mathrm{M}_1 d x=\int^x\left(x y^2-x^2\right) e^{6 y} d x=e^{6 y}\left(\frac{x^2}{2} y^2-\frac{x^3}{3}\right)\) …………………(3)

(2) \(\int\) (terms of \(\mathrm{N}_1\) not containing x) dy = \(\int y^2 e^{6 y} d y\)

= \(\frac{y^2 e^{6 y}}{6}-\int \frac{e^{6 y}}{6} \cdot 2 y d y=y^2 \frac{e^{6 y}}{6}-\frac{1}{3}\left[y \frac{e^{6 y}}{6}-\int \frac{e^{6 y}}{6} \cdot d y\right]\)

= \(\frac{y^2 e^{6 y}}{6}-\frac{1}{18} y e^{6 y}+\frac{1}{18} \frac{e^{6 y}}{6}\) ……………..(4)

∴ The general solution of (2) is (3) + (4) = C

⇒ \(\frac{x^2 y^2 e^{6 y}}{2}-\frac{x^3 e^{6 y}}{3}+\frac{y^2 e^{6 y}}{6}-\frac{y e^{6 y}}{18}+\frac{e^{6 y}}{108} \neq c \Rightarrow e^{6 y}\left(\frac{x^2 y^2}{2}-\frac{x^3}{3}+\frac{y^2}{6}-\frac{y}{18}+\frac{1}{108}\right)=c\)

Differential Equations Of First Order And First Degree Exercise 2.5

Example 2. Solve \(\left(x y^3+y\right) d x+2\left(x^2 y^2+x+y^4\right) d y=0\)

Solution.

Given equation is of the form Mdx + Ndy = 0

where \(\mathrm{M}=x y^3+y \text { and } \mathrm{N}=2\left(x^2 y^2+x+y^4\right)\)

Now, \(\frac{\partial \mathrm{M}}{\partial y}=3 x y^2+1, \frac{\partial \mathrm{N}}{\partial x}=4 x y^2+2 \Rightarrow \frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x} \Rightarrow\)

Given equation is not an exact equation

But \(\frac{1}{M}\left(\frac{\partial \mathrm{N}}{\partial x}-\frac{\partial \mathrm{M}}{\partial y}\right)=\frac{1}{x y^3+y}\left(4 x y^2+2-3 x y^2-1\right)=\frac{x y^2+1}{y\left(x y^2+1\right)}=\frac{1}{y}=g(y)\)

∴ \(\text { I.F. }=\exp \left(\int \frac{1}{y} d y\right)=\exp (\log y)=e^{\log y}=y\)

Multiplying the given equation with \(y: \Rightarrow\left(x y^4+y^2\right) d x+2\left(x^2 y^3+x y+y^5\right) d y=0\) ……(1)

Then (1) is an exact equation where \(\mathrm{M}_1=x y^4+y^2\)

and \(\mathrm{N}_1=2\left(x^2 y^3+x y+y^5\right) \Rightarrow \frac{\partial \mathrm{M}_1}{\partial y}=\frac{\partial \mathrm{N}_1}{\partial x}\)  (verify)

(1) Integrating \(\mathrm{M}_1\) w.r.t. x, treating y as constant

⇒ \(\int^x \mathrm{M}_1 d x=\int^x\left(x y^4+y^2\right) d x=\frac{x^2 y^4}{2}+y^2 x\) ………………………..(2)

(2) \(\int\) (terms of \(\mathrm{N}_1\) not containing x) dy = \(\int 2 y^5 d y=\frac{y^6}{3}\) …………….(3)

∴ The general solution of (1) is (2) + (3) = C

⇒ \(\frac{x^2 y^4}{2}+y^2 x+\frac{y^6}{3}=c \Rightarrow 3 x^2 y^4+6 x y^2+2 y^6=6 c\)

Homogeneous Equations Solved Problems Exercise 2.5

Example. 3. Solve \(\left(y^4+2 y\right) d x+\left(x y^3+2 y^4-4 x\right) d y=0\)

Solution.

Given equation is \(\left(y^4+2 y\right) d x+\left(x y^3+2 y^4-4 x\right) d y=0\) ………………………..(1)

Where \(\mathrm{M}=y^4+2 y, \mathrm{~N}=x y^3+2 y^4-4 x \Rightarrow \frac{\partial \mathrm{M}}{\partial v}=4 y^3+2, \frac{\partial \mathrm{N}}{\partial x}=y^3-4\)

Since, \(\frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\) (1) is not an exact equation

But \(\frac{1}{\mathrm{M}}\left(\frac{\partial \mathrm{N}}{\partial x}-\frac{\partial \mathrm{M}}{\partial y}\right)=\frac{1}{y\left(y^3+2\right)}\left(y^3-4-4 y^3-2\right)=\frac{-3\left(y^3+2\right)}{y\left(y^3+2\right)}=\frac{-3}{y}\) Tan-1

∴ I.F = \(\exp \left(\int \frac{-3}{y} d y\right)=\exp (-3 \log y)=\exp \left(\log y^{-3}\right)=\frac{1}{y^3}\)

Multiplying (1) with \(\frac{1}{y^3} \Rightarrow\left(y+\frac{2}{y^2}\right) d x+\left(x+2 y-\frac{4 x}{y^3}\right) d y=0\) ……………………..(2)

(2) is an exact equation where \(\mathrm{M}_1=y+\frac{2}{y^2}, \mathrm{~N}_1=x+2 y-\frac{4 x}{y^3}\)

∴ The general solution of (2) is \(\int^x\left(y+\frac{2}{y^2}\right) d x+\int 2 y d y=\mathrm{C} \Rightarrow\left(y+\frac{2}{y^2}\right) x+y^2=\mathrm{c}\)

Differential Equations Of First Order And First Degree Exercise 2.5

Example.4. Solve \(\left(2 x^2 y-3 y^2\right) d x+\left(2 x^3-12 x y+\log y\right) d y=0\)

Solution.

Given equation is of the form M dx + N dy = 0 …………………(1)

where \(\mathrm{M}=2 x^2 y-3 y^2, \mathrm{~N}=2 x^3-12 x y+\log y\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=2 x^2-6 y, \frac{\partial \mathrm{N}}{\partial x}=6 x^2-12 y \Rightarrow \frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\)

=> The given equation is not an exact equation.

But \(\frac{1}{\mathrm{M}}\left(\frac{\partial \mathrm{N}}{\partial x}-\frac{\partial \mathrm{M}}{\partial y}\right)=\frac{1}{2 x^2 y-3 y^2}\left(6 x^2-12 y-2 x^2+6 y\right)=\frac{2\left(2 x^2-3 y\right)}{y\left(2 x^2-3 y\right)}=\frac{2}{y}\)

∴ I.F \(=e^{\int(2 / y) d y}=e^{2 \log y}=e^{\log y^2}=y^2\)

Multiplying (1) by  \(y^2:\left(2 x^2 y^3-3 y^4\right) d x+\left(2 x^3 y^2-12 x y^3+y^2 \log y\right) d y=0\) ……………..(2)

(2) is an exact equation where \(\mathrm{M}_1=2 x^2 y^3-3 y^4, \quad \mathrm{~N}_1=2 x^3 y^2-12 x y^3+y^2 \log y\)

⇒ \(\frac{\partial \mathrm{M}_1}{\partial y}=6 x^2 y^2-12 y^3=6 x^2 y^2-12 y^3=\frac{\partial \mathrm{N}_1}{\partial x}\) ……………………(3)

(1) Integrating M1 w.r.t.x., treating y as constant.

⇒ \(\int^x M_1 d x=\int^x\left(2 x^2 y^3-3 y^4\right) d x=(2 / 3) x^3 y^3-3 y^4 x\)

(2) \(\int\) (terms of \(\mathrm{N}_1\) not containing x)dy = \(\int y^2 \log y d y\)

= \((1 / 3) y^3 \log y-\int(1 / 3) y^3 \cdot(1 / y) d y=(1 / 3) y^3 \log y-(1 / 3) y^2 d y\)

= \(\frac{1}{3} y^3 \log y-\frac{1}{27} y^3\) …………………….(4)

The general solution (2) is (3) + (4) = c \(\frac{2}{3} x^3 y^3-3 y^4 x+\frac{y^3}{3} \log y-\frac{1}{9} y^3=\frac{c}{9} \Rightarrow 6 x^3 y^3-27 x y^4+3 y^3 \log y=c\)

 

 

Leave a Comment