Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.7

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.7

Example. 1 Solve \(\left(x^2+1\right) \frac{d y}{d x}+4 x y=\frac{1}{x^2+1}\)

Solution.

Given Equation

\(\left(x^2+1\right) \frac{d y}{d x}+4 x y=\frac{1}{x^2+1}\)

Reducing the given equation to standard form, by dividing with \(\left(x^2+1\right)\)

⇒ \(\frac{d y}{d x}+\frac{4 x}{x^2+1} y=\frac{1}{\left(x^2+1\right)^2} \text { where } \mathrm{P}=\frac{4 x}{x^2+1}, \mathrm{Q}=\frac{1}{\left(x^2+1\right)^2}\) ……….(1)

⇒ \(\int \mathrm{P} d x=\int \frac{4 x}{x^2+1} d x=2 \log \left(x^2+1\right)=\log \left(x^2+1\right)^2\)

Then l.F = \(\exp \left[\int P d x\right]=\exp \left[\log \left(x^2+1\right)^2\right]=\left(x^2+1\right)^2\)

∴ G. S. of (1) is y (I.F.) = \(\int \mathrm{Q}(\mathrm{I} \cdot \mathrm{F}) d x+c\)

⇒ \(y\left(x^2+1\right)^2=\int \frac{1}{\left(x^2+1\right)^2} \cdot\left(x^2+1\right)^2 d x=\int d x=x+c\)

Differential Equations Of First Order And First Degree Exercise 2.7

Example. 2: Solve \(x \frac{d y}{d x}+2 y-x^2 \log x=0\)

Solution:

Given Equation

\(x \frac{d y}{d x}+2 y-x^2 \log x=0\)

Divide the equation with x to reduce it to standard form :

⇒ \(\frac{d y}{d x}+\frac{2}{x} y=x \log x\) ……………….(1)

where p = 2/x and Q = x log x

⇒ \(\int \mathrm{P} d x=\int \frac{2}{x} d x=2 \log x=\log x^2 \text { then I.F. }=e^{\log x^2}=x^2\)

The G, S. of (1)is y(I.F.) = \(\int \text { Q (I.F.) } d x+c \Rightarrow y\left(x^2\right)=\int(x \log |x|) x^2 d x+c\)

⇒ \(x^2 y=\int x^3 \log |x| d x+c=\frac{x^4}{4} \log x-\int \frac{x^4}{4} \cdot \frac{1}{x} d x+c\)

⇒ \(x^2 y=\frac{x^4}{4} \log |x|-\int \frac{x^3}{4} d x+c \Rightarrow x^2 y=\frac{x^4}{4} \log |x|-\frac{x^4}{16}+c\)

Homogeneous Equations Solved Problems Exercise 2.7

Example. 3: Solve \(x \cos x \frac{d y}{d x}+(x \sin x+\cos x) y=1\)

Solution.

Given Equation

\(x \cos x \frac{d y}{d x}+(x \sin x+\cos x) y=1\)

Dividing the given equation by x cos x, we get

⇒ \(\frac{d y}{d x}+\frac{x \sin x+\cos x}{x \cos x} y=\frac{1}{x \cos x}\)

where \(\mathrm{P}=\frac{x \sin x+\cos x}{x \cos x}, \mathrm{Q}=\frac{1}{x \cos x}\)

⇒ \(\int \mathrm{P} d x=\int \frac{x \sin x+\cos x}{x \cos x} d x=\int\left(\tan x+\frac{1}{x}\right) d x\)

= \(\int \tan x d x+\int \frac{1}{x} d x=\log |\sec x|+\log |x|=\log |x \sec x|\)

∴ \(\text { I.F. }=\exp \left[\int \mathrm{P} d x\right]=\exp (\log |x \sec x|)=x \sec x\)

The G. S. of (1) is y(l.F.) = \(\int \mathrm{Q}(\mathrm{I} . \mathrm{F}) d x+c\)

y \((x \sec x)=\int \frac{1}{x \cos x}(x \sec x) d x+c \Rightarrow y(x \sec x)=\int \sec ^2 x d x+c \Rightarrow x y \sec x=\tan x+c\)

Methods To Find Integrating Factors For Exercise 2.7

Example. 4: Solve \(x(x-1) \frac{d y}{d x}-(x-2) y=x^3(2 x-1)\)

Solution.

Given Equation

\(x(x-1) \frac{d y}{d x}-(x-2) y=x^3(2 x-1)\)

Dividing the given equation with x(x -1), we get

⇒ \(\frac{d y}{d x}-\frac{x-2}{x(x-1)} y=\frac{x^2(2 x-1)}{x-1} \text { where } \mathrm{P}=-\frac{x-2}{x(x-1)}, \mathrm{Q}=\frac{x^2(2 x-1)}{x-1}\) ………….(1)

⇒ \(\int \mathrm{P} d x=\int-\frac{x-2}{x(x-1)} d x=\int\left(\frac{1}{x-1}-\frac{2}{x}\right) d x=\log (x-1)-2 \log x\)

∴ \(\text { I.F. }=\exp \left[\int \mathrm{P} d x\right]=e^{\log (x-1)} \cdot e^{-2 \log x}\)

= \(e^{\log (x-1)} \cdot e^{\log x^{-2}}=e^{\log (x-1) x^{-2}}=(x-1) x^{-2}=\frac{x-1}{x^2}\)

∴ G. S. of (1) is y (I.F.) = \(\int \mathrm{Q}(\text { I.F.) } d x+c\)

⇒ \(\frac{y(x-1)}{x^2}=\int \frac{x^2(2 x-1)}{x-1} \cdot \frac{x-1}{x^2} d x+c=\int(2 x-1) d x+c\)

⇒ \(\frac{y(x-1)}{x^2}=\int \frac{2 x^2}{2} d x-\int d x+c=x^2-x+c\)

Solutions For Exercise 2.7 First-Order Homogeneous Equations 

Example. 5: Solve \(\left(y-e^{\sin ^{-1} x}\right) \frac{d x}{d y}+\sqrt{1-x^2}=0, \quad|x|<1\)

Solution:

Given Equation

\(\left(y-e^{\sin ^{-1} x}\right) \frac{d x}{d y}+\sqrt{1-x^2}=0, \quad|x|<1\)

Gien equation can be written as: \(\sqrt{1-x^2} \frac{d y}{d x}+y=e^{\text{Sin}^{-1}} x \Rightarrow \frac{d y}{d x}+\frac{1}{\sqrt{1-x^2}} y\)

= \(\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^2}} \ldots \ldots \ldots\)

where \(\left.\mathrm{P}=\frac{1}{\sqrt{1-x^2}}, \mathrm{Q}=\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^2}}\)

(Note.|x|<1 \(\Rightarrow\left(1-x^2\right)>0\right)\)

I.F. = \(\exp \left(\int \mathrm{P} d x\right)=\exp \left(\int \frac{d x}{\sqrt{1-x^2}}\right)\)

= \(\exp \left(\text{Sin}^{-1} x\right)=e^{\text{Sin}^{-1} x}\)

where \(\mathrm{P}=\frac{1}{\sqrt{1-x^2}}, \mathrm{Q}=\frac{e^{\sin ^{-1} x}}{\sqrt{1-x^2}}\)

(Note. |x|<1 ⇒ \(\left(1-x^2\right)>0\))

General solution of (1) is y (I.F.) = \(\int \mathrm{Q}\) (I.F.) dx+c

⇒ y e^{\text{Sin}^{-1} x}=\int \frac{e^{\text{Sin}^{-1} x}}{\sqrt{1-x^2}} \cdot e^{\text{Sin}^{-1} x} d x+c=\int \frac{e^{2 \text{Sin}^{-1} x}}{\sqrt{1-x^2}} d x+c[/latex]

⇒ \(y e^{\sin ^{-1} x}=\int e^{2 t} d t+c\) where t = \(\sin ^{-1} x \Rightarrow d t=\frac{d x}{\sqrt{1-x^2}}\)

⇒ \(y e^{\text{Sin}^{-1} x}=\frac{e^{2 t}}{2}+c=\frac{e^{2 \text{Sin}^{-1} x}}{2}+c \Rightarrow 2 y e^{\text{Sin}^{-1} x}=e^{2 \text{Sin}^{-1} x}+c\)

Step-By-Step Solutions For Exercise 2.7 Differential Equations

Example 6. Solve \(\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}\)

Solution.

Given linear equation is \(\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}\)  where P = \(\frac{1}{(1-x) \sqrt{x}}\)

⇒ \(\int \mathrm{P} d x=\int \frac{1}{(1-x) \sqrt{x}} d x\) . Put [katex]\sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \Rightarrow \frac{1}{\sqrt{x}} d x=2 d t[/latex]

= \(2 \int \frac{d t}{1-t^2}=2 \frac{1}{2} \log \frac{1+t}{1-t}=\log \frac{1+\sqrt{x}}{1-\sqrt{x}}\)

∴ \(\text { I.F. }=\exp \log \frac{1+\sqrt{x}}{1+\sqrt{x}}=\frac{1+\sqrt{x}}{1-\sqrt{x}}\)

∴ (\(\exp (\log x)=e^{\log x}=x\))

∴ G.S of given equation is \(y\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)=\int(1-\sqrt{x})\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right) d x+c=\int(1+\sqrt{x}) d x+c\)

⇒ \(y\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)=x+\frac{x^{3 / 2}}{3 / 2}+c \Rightarrow y\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)=x+\frac{2}{3} x^{3 / 2}+c\)

Methods For Solving Exercise 2.7 Differential Equations

Example.7. Solve \(y d x-x d y+\log x d x=0 \text { (or) Solve } x \frac{d y}{d x}-y=\log x\)

Solution.

Given equation is \(y d x-x d y+\log x d x=0\)

⇒ \(\frac{d y}{d x}-\frac{1}{x} y=\frac{\log x}{x}\) This is a linear equation in y.

Where \(\mathrm{P}=-\frac{1}{x}, \mathrm{Q}=(\log x) / x . \text { I.F. }=e^{\int(-1 / x) d x}=e^{-\log x}=e^{\log x^{-1}}=1 / x\)

The GS. of (1) is \(y(1 / x)=\int \frac{1}{x} \cdot \frac{\log x}{x} d x+c=\int \frac{1}{x^2} \log x d x+c\)

= \(-\frac{1}{x} \log x-\int\left(-\frac{1}{x}\right) \frac{1}{x} d x+c \text { (Integrating by parts) }\)

= \(-\frac{1}{x} \log x+\int \frac{1}{x^2} d x+c=-\frac{1}{x} \log x-\frac{1}{x}+c\)

∴ G.S. is \(y=-\log x-1+c x \Rightarrow y=c x-(1+\log x)\)

Aliter: G. E. can be written as (x dy – y dx) – log x = 0

⇒ \(\frac{x d y-y d x}{x^2}-\frac{1}{x^2} \log x=0 \Rightarrow d\left(\frac{y}{x}\right)+(\log x) d\left(\frac{1}{x}\right)=0\)

⇒ \(\int d\left(\frac{y}{x}\right)+\int \log x d\left(\frac{1}{x}\right)=c \Rightarrow\left(\frac{y}{x}\right)+\left(\frac{1}{x}\right) \log x-\int\left(\frac{1}{x^2}\right) d x \Rightarrow\left(\frac{y}{x}\right)+\left(\frac{1}{x}\right) \log x+\left(\frac{1}{x}\right)=c\)

Solution is \((y / x)+(1 / x)(1+\log x)=c\)

Exercise 2.7 Solutions For First-Order Differential Equations 

Example. 8: Obtain the equation of the curve satisfying the differential equation \(\left(1+x^2\right) \frac{d y}{d x}+2 x y-4 x^2=0\) and passing through the origin

Solution:

Given equation is \(\left(1+x^2\right) \frac{d y}{d x}+2 x y=4 x^2\) ……..(1)

Dividing (1) by \(\left(1+x^2\right)\) to reduce it to standard form

⇒ \(\frac{d y}{d x}+\frac{2 x}{1+x^2} y=\frac{4 x^2}{1+x^2} \text { where } \mathrm{P}=\frac{2 x}{1+x^2}, \mathrm{Q}=\frac{4 x^2}{1+x^2}\) …………(2)

Now, \(\int \mathrm{P} d x=\int \frac{2 x}{1+x^2} d x=\log \left(1+x^2\right)\)

∴ \(\text { I.F. }=\exp \left(\int \mathrm{P} d x\right)=\exp \left[\log \left(1+x^2\right)\right]=1+x^2\)

∴ G.S. of (1) is y(I.F.) = \(\int \mathrm{Q}(\mathrm{I} \cdot \mathrm{F}) d x+c \Rightarrow y\left(1+x^2\right)=\int \frac{4 x^2}{1+x^2} \cdot\left(1+x^2\right) d x+c=\int 4 x^2 d x+c\)

⇒ \(y\left(1+x^2\right)=\left(4 x^3 / 3\right)+c\)

Given the curve passes through the origin (0,0) => 0 = 0 +c => c = 0

∴ the equation if the required curve is \(3 y\left(1+x^2\right)=4 x^3\)

 

 

 

Leave a Comment