Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.8

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.8

Example. 1: Solve \(\left(1+y^2\right) d x=\left(\text{Tan}^{-1} y-x\right) d y\)

Solution.

Given equation

\(\left(1+y^2\right) d x=\left(\text{Tan}^{-1} y-x\right) d y\)

Given equation can be written as \(\left(1+y^2\right) \frac{d x}{d y}+x=\text{Tan}^{-1} y\)

Dividing by \(\left(1+y^2\right)\) to reduce this to standard form: [/latex]\frac{d x}{d y}+\frac{1}{1+y^2} x[/latex] = \(\frac{\text{Tan}^{-1} y}{1+y^2}\)……(1)

Where \(P_1=\frac{1}{1+y^2}\) and \(Q_1=\frac{\text{Tan}^{-1} y}{1+y^2}\) are functions of y alone.

Now \(\int P_1 d y=\frac{1}{1+y^2} d y=\text{Tan}^{-1} y\)

∴ I.F. = \(\exp \left(\int \mathrm{P} d y\right)=e^{\text{Tan}^{-1} y}\)

∴ G. S. of (1) is x (I.F.) \(=\int \mathrm{Q}_1\)

(I.F. ) dy+\(c \Rightarrow x e^{\mathrm{Tan}^{-1} y}=\int \frac{\text{Tan}^{-1} y}{1+y^2} \cdot e^{\mathrm{Tan}^{-1} y} d y+c\)

Put \(\text{Tan}^{-1} y=u \Rightarrow \frac{d y}{1+y^2}=d u\)

∴ G. S.is \(x e^{\text{Tan}^{-1} y}=\int u e^u d u+c=u e^u-e^u+c\)

∴ \(x e^{\text{Tan}^{-1} y}=e^{\text{Tan}^{-1} y}\left(\text{Tan}^{-1} y-1\right)+c\)

 

Differential Equations of First Order and First Degree Exrcise 2(h) Solved Problems Example 1

Differential Equations Of First Order And First Degree Exercise 2.8

Example. 2: Solve \(\left(1+x+x y^2\right) \frac{d y}{d x}+\left(y+y^3\right)=0\)

Solution.

Given equation

\(\left(1+x+x y^2\right) \frac{d y}{d x}+\left(y+y^3\right)=0\)

Given equation can be written as \(y\left(1+y^2\right) \frac{d x}{d y}+1+x\left(1+y^2\right)=0\)

⇒ \(\frac{d x}{d y}+\frac{x\left(1+y^2\right)}{y\left(1+y^2\right)}=\frac{-1}{y\left(1+y^2\right)} \Rightarrow \frac{d x}{d y}+\frac{1}{y} x=\frac{-1}{y\left(1+y^2\right)}\)

which is a linear equation in x

where \(\mathrm{P}_1=\frac{1}{y}\) and \(\mathrm{Q}_1=\frac{-1}{y\left(1+y^2\right)}\)

⇒ \(\int \mathrm{P}_1 d y=\int \frac{1}{y} d y=\log y\)

∴ I.F. = \(\exp \left(\int \mathrm{P}_1 d y\right)=e^{\log y}=y\)

∴ G. S. of (1) is x (I.F.) = \(\int \mathrm{Q}_1\) (I.F.) dy+c

⇒ x(y) = \(\int \frac{-1}{y\left(1+y^2\right)} \cdot y d y+c \Rightarrow x y=-\int \frac{1}{1+y^2} d y+c\)

⇒ xy = \(-\tan{Tan}^{-1} y+c \Rightarrow x y+\text{Tan}^{-1} y=c\)

Differential Equations of First Order and First Degree exercise 2(h) example 2

Homogeneous Equations Solved Problems Exercise 2.8

Example. 3: Solve \(\left(x+2 y^3\right) \frac{d y}{d x}=y\)

Solution.

Given equation

\(\left(x+2 y^3\right) \frac{d y}{d x}=y\)

Given equation may be written as \(y \frac{d x}{d y}=x+2 y^3 \Rightarrow \frac{d x}{d y}-\frac{1}{y} x=2 y^2\) ………(1)

where \(\mathrm{P}_1=-\frac{1}{y} \text { and } \mathrm{Q}_1=2 y^2\)

Now, \(\int \mathrm{P}_1 d y=\int\left(-\frac{1}{\dot{y}}\right) d y=-\log y \Rightarrow \text { I.F. }=\exp \left(\int \mathrm{P}_1 d y\right)=e^{-\log y}=\frac{1}{y}\)

Hence G. S. of (1) is x (I.F) \(=\int \mathrm{Q}_1(\mathrm{I} . \mathrm{F}) d y+c\)

⇒ \(x(1 / y)=\int 2 y^2(1 / y) d y+c=2\left(y^2 / 2\right)+c=y^2+c\)

∴ \(\text { G. S. of (1) is } x=y^3+c y\)

Methods To Find Integrating Factors For Exercise 2.8

Example 4. Solve \((x+y+1) \frac{d y}{d x}=1\)

Solution. Given \((x+y+1) \frac{d y}{d x}=1 \Rightarrow \frac{d x}{d y}=x+y+1 \Rightarrow \frac{d x}{d y}-x=(y+1)\)

This is a linear equation in x. I.F. = \(e^{\int-d y}=e^{-y}\)

∴ The GS. is \(x e^{-y}=\int(y+1) e^{-y} d y+c=\int y e^{-y} d y+\int e^{-y} d y+c\)

⇒\(x e^{-y}=y\left(-e^{-y}\right)-\int\left(-e^{-y}\right) d y-e^{-y}+c=-y e^{-y}+\int e^{-y} d y-e^{-y}+c\)

⇒ \(x e^{-y}=-y e^{-y}-e^{-y}-e^{-y}+c \Rightarrow x+y+2=c e^y\)

Leave a Comment