Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.9

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.9

Example. 1: Solve \(\frac{d y}{d x}+\frac{y}{x}=y^2 x \sin x, x>0\)

Solution.

Given equation is \(\frac{d y}{d x}+\frac{y}{x}=y^2 x \sin x\) ………………(1) is Bernoulli’s equation.

Multiplying (1) by \(y^{-2} \text {, we get : } y^{-2} \frac{2 y}{d x}+\frac{y}{x}=x \sin x\) ………………(2)

Let \( y^{-1}=u \Rightarrow(-1) y^{-2} \frac{d y}{d x}=\frac{d u}{d x} \Rightarrow y^{-2} \frac{d y}{d x}=-\frac{d u}{d x}\) ……………..(3)

(2) and (3) \(\Rightarrow-\frac{d u}{d x}+\frac{u}{x}=x \sin x \Rightarrow \frac{d u}{d x}-\frac{u}{x}=-x \sin x\) ………..(4)

(4) is a linear equation in u and x where \(\mathrm{P}=-\frac{1}{x}, \mathrm{Q}=-x \sin x\)

∴ \(\text { I.F. }=\exp \left(\int \mathrm{P} d x\right)=\exp \left(\int-\frac{1}{x} d x\right)=e^{-\log x}=e^{\log x^{-1}}=\frac{1}{x}\)

The general solution of (4) is I.F \(=\int \mathrm{Q} \text { (I.F) } d x+c \Rightarrow u(1 / x)=\int(-x \sin x)(1 / x) d x+c=\int(-\sin x) d x+c\)

⇒ \(u(1 / x)=\cos x+c \Rightarrow u=x \cos x+c x\) …………………..(5)

substitution u = 1/y in (5), the general solution of (1) is

∴ \(\text { 1/ } y=x \cos x+c x \Rightarrow x y \cos x+c x y=1\)

Differential Equations Of First Order And First Degree Exercise 2.9

Example. 2: Solve \(x \frac{d y}{d x}+y=y^2 \log x\)

Solution:

Given equation is \(x \frac{d y}{d x}+y=y^2 \log x\) ……………………….(1)

Dividing (1) by x and then multiplying with \(y^{-2}\)2 we get:

⇒ \(\frac{d y}{d x}+\frac{y}{x}=\frac{y^2 \log x}{x} \Rightarrow \frac{1}{y^2} \frac{d y}{d x}+\frac{1}{x} \cdot \frac{1}{y}=\frac{\log x}{x}\) …………………..(2)

Let \(u=\frac{1}{y} \Rightarrow \frac{d u}{d x}=-\frac{1}{y^2} \frac{d y}{d x} \Rightarrow \frac{1}{y^2} \frac{d y}{d x} \Rightarrow=-\frac{d u}{d x}\) ……………(3)

(2) and (3) \(\Rightarrow-\frac{d u}{d x}+\frac{1}{x} u=\frac{\log x}{x} \Rightarrow \frac{d u}{d x}-\frac{1}{x} u=\frac{-\log x}{x}\) ……………..(4)

(4) is a linear equation in and x where \(\mathrm{P}=-\frac{1}{x}, \mathrm{Q}=\frac{-\log x}{x}\)

Then \(\text { I.F. }=\exp \left(\int \mathrm{P} d x\right)=\exp \left(\int-\frac{1}{x} d x\right)=e^{-\log x}=e^{\log x^{-1}}=\frac{1}{x}\)

The General solution of (4) is (I.F.) = \(\int \mathrm{Q}(\text { I.F) } d x+c\)

⇒ \(u\left(\frac{1}{x}\right)=\int \frac{-\log x}{x} \cdot \frac{1}{x} d x+c=\int-\frac{1}{x^2} \log x d x+c\)

⇒ \(u\left(\frac{1}{x}\right)=\frac{1}{x} \log x-\int \frac{1}{x} \cdot \frac{1}{x} d x+c=\frac{1}{x} \log x+\frac{1}{x}+c\) ………………………….(5)

Putting \(u=\frac{1}{y}\) in (5), the general solution of(1) is

∴ \(\frac{1}{x y}=\frac{1}{x} \log x+\frac{1}{x}+c \Rightarrow 1=y \log x+y+c x y\)

Homogeneous Equations Solved Problems Exercise 2.9

Example. 3: Solve \(\frac{d y}{d x}+\frac{x y}{1-x^2}=x \sqrt{y}\)

Solution.

Given equation is \(\frac{d y}{d x}+\frac{x y}{1-x^2}=x \sqrt{y} \) ………………………(1)

Multiplying (1) by \(y^{-1 / 2} \Rightarrow y^{-1 / 2} \frac{d y}{d x}+\frac{x}{1-x^2} y^{1 / 2}=x\) ………………………(2)

Let \(y^{1 / 2}=u \Rightarrow \frac{1}{2} y^{-1 / 2} \frac{d y}{d x}=\frac{d u}{d x} \Rightarrow y^{-1 / 2} \frac{d y}{d x}=2 \frac{d u}{d x}\) ……………………(3)

(2) and (3) \(\Rightarrow 2 \frac{d u}{d x}+\frac{x}{1-x^2} u=x \Rightarrow \frac{d u}{d x}+\frac{x}{2\left(1-x^2\right)} u=\frac{x}{2}\)

where \(\mathrm{P}=\frac{x}{2\left(1-x^2\right)} \text { and } \mathrm{Q}=\frac{x}{2}\)

Now \(\text { I.F. }=\exp \left(\int \frac{x}{2\left(1-x^2\right)} d x\right)=\exp \left(\int \frac{-2 x}{-4\left(1-x^2\right)} d x\right)\)

= \(\exp \left[-\frac{1}{4} \log \left(1-x^2\right)\right]=\exp \left[\log \left(1-x^2\right)^{-1 / 4}\right]=\frac{1}{\left(1-x^2\right)^{1 / 4}}\)

The G. S. of (4) is \(u \cdot \frac{1}{\left(1-x^2\right)^{1 / 4}}=\int \frac{x}{2} \cdot \frac{1}{\left(1-x^2\right)^{1 / 4}} d x+c\)

⇒ \(\frac{u}{\left(1-x^2\right)^{1 / 4}}=-\frac{1}{4} \int t^{-1 / 4} d t+c \text { where } t=1-x^2\)

⇒ \(\frac{u}{\left(1-x^2\right)^{1 / 4}}=-\frac{1}{4} \frac{t^{3 / 4}}{(3 / 4)}+c=-\frac{1}{3}\left(1-x^2\right)^{3 / 4}+c\)

∴ The G.S of (1) is \(\frac{\sqrt{y}}{\left(1-x^2\right)^{1 / 4}}=-\frac{1}{3}\left(1-x^2\right)^{3 / 4}+c \Rightarrow 3 \sqrt{y}+\left(1-x^2\right)=3 c\left(1-x^2\right)^{1 / 4}\)

Methods To Find Integrating Factors For Exercise 2.9

Example.4 Solve \(\frac{d y}{d x}\left(x^2 y^3+x y\right)=1\)

Solution.

Given equation is \(\frac{d y}{d x}\left(x^2 y^3+x y\right)=1 \Rightarrow \frac{d x}{d y}=x^2 y^3+x y \Rightarrow \frac{d x}{d y}-x y=x^2 y^3\) ……………..(1)

(1) is Bernoulli’s equation in x. Multiplying (1) by \(x^{-2} \Rightarrow x^{-2} \frac{d x}{d y}-x^{-1} y=y^3\) ……….(2)

Put \(x^{-1}=u \Rightarrow-1. x^{-2} \frac{d x}{d y}=\frac{d u}{d y} \Rightarrow x^{-2} \frac{d x}{d y}=-\frac{d u}{d y}\) ……………..(3)

(2) and (3) \(\Rightarrow-\frac{d u}{d y}-u y=y^3 \Rightarrow \frac{d u}{d y}+u y=-y^3\) ………….(4)

(4) is a linear equation in u and y where \(\mathrm{P}=y, \mathrm{Q}=-y^3 \text {. Now I.F. }=\exp \left(\int y d y\right)=e^{y^2 / 2}\)

G. S. of (4) is \(u e^{y^2 / 2}=\int-y^3 e^{y^2 / 2} d y+c=-2 \int t e^t d t+c \text { where } t=y^2 / 2\)

⇒ \(u e^{y^2 / 2}=-2 e^t(t-1)+c\) Substituting u and t

The G.S. of (1) is \(\frac{1}{x} e^{y^2 / 2}=-2 e^{y^2 / 2}\left(\frac{y^2}{2}-1\right)+c \Rightarrow x\left(2-y^2\right)-c x e^{-y^2 / 2}=1\)

Solved Example Problems From Exercise 2.9 In Differential Equations

Example.5. Solve \(\frac{d y}{d x}=\frac{x^2+y^2+1}{2 x y}\)

Solution.

Given equation

\(\frac{d y}{d x}=\frac{x^2+y^2+1}{2 x y}\)

Given equation can be written as \(2 x y \frac{d y}{d x}=x^2+y^2+1 \Rightarrow 2 x y \frac{d y}{d x}-y^2=x^2+1\)

⇒ \(2 y \frac{d y}{d x}-\left(\frac{1}{x}\right) y^2=\frac{x^2+1}{x} . \text { Put } y^2=z \Rightarrow 2 y \frac{d y}{d x}=\frac{d z}{d x}\)

∴ \(\frac{d z}{d x}-\frac{1}{x} z=\frac{x^2+1}{x}\) This is a linear equation in z

Where \(\mathrm{P}=-1 / x \text { I.F. }=e^{\int(-1 / x) d x}=e^{-\log x}=e^{\log x^{-1}}=x^{-1}=1 / x\)

⇒ \(e^{\int(-1 / x) d x}=e^{-\log x}=e^{\log x^{-1}}=x^{-1}=1 / x\)

∴ \(\text { G.S. is } z(1 / x)=\int \frac{1}{x} \cdot \frac{x^2+1}{x} d x+c=\int \frac{x^2+1}{x^2} d x+c\)

⇒ \(\frac{z}{x}=\int\left(1+\frac{1}{x^2}\right) d x+c=\int d x+\int \frac{1}{x^2} d x+c=x-\frac{1}{x}+c \Rightarrow z=x^2-1+c x\)

∴ The G.S. of the given equation is \(y^2=x^2-1+c x \Rightarrow y^2-x^2+1=c x\)

Solutions For Exercise 2.9 First-Order Homogeneous Equations

Example. 6. Solve \(x y-\frac{d y}{d x}=y^3 e^{-x^2}\)

Solution.

Given equation

\(x y-\frac{d y}{d x}=y^3 e^{-x^2}\)

Given equation can be written as \(\frac{d y}{d x}-x y=-y^3 e^{-x^2}\)

⇒ \(\frac{1}{y^3} \frac{d y}{d x}-\frac{1}{y^2} x=-e^{-x^2} \text {. Put } \frac{1}{y^2}=z \Rightarrow-\frac{2}{y^3} \frac{d y}{d x}=\frac{d z}{d x}\)

⇒ \(-\frac{1}{2} \frac{d z}{d x}-x z=-e^{-x^2} \Rightarrow \frac{d z}{d x}+2 x z=2 e^{-x^2}\)

This is a linear equation in z where \(\mathrm{P}=2 x . \text { I.F. }=e^{\int 2 x d x}=e^{x^2}\)

∴ G.S. is \(z e^{x^2}=2 \int e^{-x^2} \cdot e^{x^2} d x+c=2 \int d x+c=2 x+c\)

∴ G.S. of the given equation is \(\left(1 / y^2\right) e^{x^2}=2 x+c\)

Examples Of Integrating Factors In Homogeneous Equations Exercise 2.9

Example.7. Solve \(\frac{d y}{d x}=2 y \tan x+y^2 \tan ^2 x\)
Solution.

Given equation

\(\frac{d y}{d x}=2 y \tan x+y^2 \tan ^2 x\)

The given equation can be written as \(\frac{d y}{d x}-(2 \tan x) y=y^2 \tan ^2 x \Rightarrow \frac{1}{y^2} \frac{d y}{d x}-(2 \tan x) \frac{1}{y}=\tan ^2 x\)

Let \(-\frac{1}{y}=z \Rightarrow \frac{1}{y^2} \frac{d y}{d x}=\frac{d z}{d x}\)

Then the above equation becomes: \(\frac{d z}{d x}+(2 \tan x) z=\tan ^2 x\)

This is a linear equation in z where P = 2 tan x.

Now \(\text { I.F. }=e^{\int 2 \tan x d x}=e^{2 \log \sec x}=e^{\log \sec ^2 x}=\sec ^2 x\).

∴ G.S. is \(z \sec ^2 x=\int \tan ^2 x \sec ^2 x d x-c\)

⇒ \(z \sec ^2 x=\int \tan ^2 x d(\tan x)-c=\left(\tan ^3 x\right) / 3-c\)

∴ G.S of the G.E is \(-(1 / y) \sec ^2 x=(1 / 3) \tan ^3 x-c y^{-1} \sec ^2 x=c-(1 / 3) \tan ^3 x\)

Leave a Comment