Differential Operators Exercise 5(b)

Differential Operators Exercise 5(b)

1. prove that

  1. div r=3 
  2. curl r=0 
  3. div (r×a)=0
  4. curl(r×a)=-2a
  5. grad(r.a) =a

Solution:

1. \(\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)

div r = \(\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)=1+1+1=3\)

2. curl \(\bar{r}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z\end{array}\right|=0\)

3. div \((\mathbf{r} \times \mathbf{a})=\sum \mathbf{i} \cdot \frac{\partial}{\partial x}(\mathbf{r} \times \mathbf{a})\)

⇒ \(\sum \mathbf{i} \cdot\left(\frac{\partial \mathbf{r}}{\partial x} \times \mathbf{a}\right)=\sum \mathbf{i} \cdot(\mathbf{i} \times \mathbf{a})=\sum[\mathbf{i} \mathbf{a}]=0\)

4. Let \(\mathbf{a}=a_1 \mathbf{i}+a_2 \mathbf{j}+a_3 \mathbf{k} ; \quad \mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}\)

curl \((\mathbf{r} \times \mathbf{a})=\nabla \times(\mathbf{r} \times \mathbf{a})=\sum \mathbf{i} \times \frac{\partial}{\partial x}(\mathbf{r} \times \mathbf{a})\)

= \(\sum \mathbf{i} \times\left(\frac{\partial \mathbf{r}}{\partial x} \times \mathbf{a}\right)=\sum \mathbf{i} \times(\mathbf{i} \times \mathbf{a})=\sum[(\mathbf{i} \cdot \mathbf{a}) \mathbf{i}-(\mathbf{i} \cdot \mathbf{i}) \mathbf{a}]\)

= \(\sum\left[\left(a_1\right) \mathbf{i}-\mathbf{a}\right]=\left(a_1 \mathbf{i}+a_2 \mathbf{j}+a_3 \mathbf{k}\right)-3 \mathbf{a}=\bar{a}-3 \bar{a}=-2 \mathbf{a}\)

Differential Operators Exercise Step-By-Step Solutions

2. If =x2yi-2xzj+2yzk,find

  1. div f
  2. curl f

Solution:

1. div f = \(\frac{\partial}{\partial x}\left(x^2 y\right)+\frac{\partial}{\partial y}(-2 x z)+\frac{\partial}{\partial z}(2 y z)=2 x y+2 y\)

2. curl \((curl \mathrm{f})=\left|\begin{array}{ccc}\mathrm{i} & \mathrm{j} & \mathrm{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 y & -2 x z & 2 y z\end{array}\right|=2 \mathrm{i}(z+x)-\mathrm{k}\left(2 z+x^2\right)\)

curl(curl f) = \(\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 z+2 x & 0 & -2 z-x^2
\end{array}\right|=2 \mathrm{j}(1+x)\)

3.

  1. Show that 3y4z2i+4x3z2j-3x2y2k is solenoidal.
  2. if f= (x+3y)i+y-2z)j+(x+pz)k is a solenoidal find p?

Solution:

If f is a solenoidal then div f=0

∴ \(\frac{\partial}{\partial x}(x+3 y)+\frac{\partial}{\partial y}(y-2 z)+\frac{\partial}{\partial z}(x+p z)=0\)

1+1+p=0

⇒ p=-2

4. Prove that f= (sin y+z)i+ (x cosy-z)j+9x-y0k is irrotational.

Solution: If f is irrotational then curl f=0

5. If Φ =2x3y2z find div (grad Φ).

Solution:

Given

If Φ =2x3y2z

Grad \(\phi=\mathbf{i} \frac{\partial \phi}{\partial x}+\mathbf{j} \frac{\partial \phi}{\partial y}+\mathbf{k} \frac{\partial \phi}{\partial z}=6 x^2 y^2 z^4 \mathbf{i}+4 x^3 y z^4 \mathbf{j}+8 x^3 y^2 z^3 \mathbf{k}\)

∴ div\((\text{grad} \phi)=\frac{\partial}{\partial x}\left(6 x^2 y^2 z^4\right)+\frac{\partial}{\partial y}\left(4 x^3 y z^4\right)+\frac{\partial}{\partial z}\left(8 x^3 y^2 z^3\right)\)

= \(12 x y^2 z^4+4 x^3 z^4+24 x^3 y^2 z^2\)

6. Find curl f if e x+y+z (i+j+k).

Solution:

f = \(e^{x+y+z}(\mathbf{i}+\mathbf{j}+\mathbf{k})\)

curl \(\mathbf{f}=\nabla \times \mathbf{f}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x+y+z} & e^{x+y+z} & e^{x+y+z}
\end{array}\right|\)

= \(\mathrm{i}\left(e^{x+y+z}-e^{x+y+z}\right)-e t c=0\)

Examples Of Differential Operator Problems

7. If f=(x+y+1) i+j-(x+y)k prove that f. curl f=0

Solution:

Given

f=(x+y+1) i+j-(x+y)k

curl \(\mathbf{f}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y+1 & -1 & -(x+y)
\end{array}\right|\)

= \(\mathbf{i}(0-1)-\mathbf{j}(-1-0)+\mathbf{k}(0-1)=-\mathbf{i}+\mathbf{j}-\mathbf{k}\)

∴ \(f . \text{curl} \mathbf{f}=-(x+y+1)+1+x+y=0\)

8. If A=2yzi-x2yj+xz2k and Φ=2x2yz3 find  (A×∇)Φ.

Solution:

Given

A=2yzi-x2yj+xz2k and Φ=2x2yz3

⇒ \((\mathbf{A} \times \nabla) \phi=\mathbf{A} \times \mathbf{i} \frac{\partial \phi}{\partial x}+\mathbf{A} \times \mathbf{j} \frac{\partial \phi}{\partial y}+\mathbf{A} \times \mathbf{k} \frac{\partial \phi}{\partial z}\)

= \(\mathbf{A} \times\left(4 x y z^3 \mathbf{i}+2 x^2 z^3 \mathbf{j}+6 x^2 y z^2 \mathbf{k}\right)\)

= \(\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
.2 y z & -x^2 y & x z^2 \\
4 x y z^3 & 2 x^2 z^3 & 6 x^2 y z^2
\end{array}\right|\)

Simplify to get the answer.

9. If Φ=x2-y2 show that ∇2Φ=0

Solution:

Given

Φ=x2-y2

⇒ \(\nabla^2 \phi=\frac{\partial^2 \phi}{\partial x^2}+\frac{\partial^2 \phi}{\partial y^2}+\frac{\partial^2 \phi}{\partial z^2}=\frac{\partial}{\partial x}(2 x)+\frac{\partial}{\partial y}(-2 y)+0=2-2=0\)

10. Show that ∇2(x/r3)=0

Solution:

⇒ \(\nabla^2\left(\frac{x}{r^3}\right)=\sum \frac{\partial^2}{\partial x^2}\left(\frac{x}{r^3}\right)=\sum \frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left(\frac{x}{r^3}\right)\right]\)

Now \(\frac{\partial}{\partial x}\left[\frac{\partial}{\partial x}\left(\frac{x}{r^3}\right)\right]=\frac{\partial}{\partial x}\left[\frac{1}{r^3}-\frac{3 x}{r^4} \frac{\partial r}{\partial x}\right]\)

= \(\frac{\partial}{\partial x}\left[\frac{1}{r^3}-\frac{3 x}{r^4}\left(\frac{x}{r}\right)\right] \cdot\)

(because \(r^2=x^2+y^2+z^2\) gives \(\frac{\partial r}{\partial x}=\frac{x}{r}\))

= \(\frac{\partial}{\partial x}\left[\frac{1}{r^3}-\frac{3 x^2}{r^5}\right]=-\frac{3}{r^4} \frac{\partial r}{\partial x}-\frac{6 x}{r^5}+\frac{15 x^2}{r^6} \cdot \frac{\partial r}{\partial x}\)

= \(-\frac{3}{r^4}\left(\frac{x}{r}\right)-\frac{6 x}{r^5}+\frac{15 x^2}{r^6}\left(\frac{x}{r}\right)=-\frac{9 x}{r^5}+\frac{15 x^3}{r^7}\)

Again \(\frac{\partial^2}{\partial y^2}\left(\frac{x}{r^3}\right)=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial y}\left(\frac{x}{r^3}\right)\right]=\frac{\partial}{\partial y}\left[-\frac{3 x}{r^4} \cdot \frac{\partial r}{\partial y}\right]\)

= \(\frac{\partial}{\partial y}\left[-\frac{3 x}{r^4}\left(\frac{y}{r}\right)\right]\)

= \(\frac{\partial}{\partial y}\left[-\frac{3 x y}{r^5}\right]=-\frac{3 x}{r^5}+\frac{15 x y}{r^6} \cdot \frac{\partial r}{\partial y}=-\frac{3 x}{r^5}+\frac{15 x y^2}{r^7}\)

Similarly \(\frac{\partial^2}{\partial z^2}\left(\frac{x}{r^3}\right)=-\frac{3 x}{r^5}+\frac{15 x z^2}{r^7}\)

∴ \(\nabla^2\left(\frac{x}{r^3}\right)=\left(\frac{\partial^2}{\partial x}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}\right)\left(\frac{x}{r^3}\right)\)

= \(-\frac{9 x}{r^5}+\frac{15 x^3}{r^7}-\frac{3 x}{r^5}+\frac{15 x y^2}{r^7}-\frac{3 x}{r^5}+\frac{15 x z^2}{r^7}\)

= \(-\frac{15 x}{r^5}+\frac{15 x}{r^7}\left(x^2+y^2+z^2\right)=-\frac{15 x}{r^5}+\frac{15 x}{r^7}\left(r^2\right)=0\)

Understanding Exercise 5(B) In Differential Operators

11. Show that ∇2(log r)=1/r2.

Solution:

⇒ \(\nabla^2(\log r)=\sum \frac{\partial^2}{\partial x^2}(\log r)=\sum \frac{\partial}{\partial x}\left(\frac{1}{r} \frac{\partial r}{\partial x}\right)=\sum \frac{\partial}{\partial x}\left(\frac{1}{r} \cdot \frac{x}{r}\right)\)

= \(\sum \frac{\partial}{\partial x}\left(\frac{x}{r^2}\right)=\sum\left[\frac{1}{r^2}-\frac{2 x}{r^3}\left(\frac{x}{r}\right)\right]\)

= \(\sum\left(\frac{1}{r^2}-\frac{2 x^2}{r^4}\right)\)

= \(\frac{3}{r^2}-\frac{2}{r^4}\left(x^2+y^2+z^2\right)=\frac{3}{r^2}-\frac{2}{r^4}\left(r^2\right)=\frac{1}{r^2}\)

 

Differential Operators Solved Problems Level Surface

Differential Operators Solved Problems

Example. 1. Find the directional derivative of f = xy + yz + zx in the direction of the vector i + 2j + 2k at the point (1, 2, 0)

Solution:

Given f = xy + yz + zx

grad f \(\nabla \mathbf{f}=\mathbf{i} \frac{\partial f}{\partial x}+\mathbf{j} \frac{\partial f}{\partial y}+\mathbf{k} \frac{\partial f}{\partial z}\)

= (y + z) i + (z + x) j + (x + y) k

If e is the unit vector in the direction of the vector i + 2 j + 2k, then

⇒ \(\mathbf{e}=-\frac{\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}}{\sqrt{\left(1+2^2+2^2\right)}}=\frac{1}{3}(\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}) \)

The directional derivative = e.∇f

= \(\frac{1}{3}(i+2 j+2 k) \cdot[(y+z) \mathbf{i}+(z+x) \mathbf{j}+(x+y) \mathbf{k}]=\frac{1}{3}(4 x+3 y+3 z)=\frac{10}{3} \text { at }(1,2,0)\)

Gradient And Level Surface Solved Examples

Example. 2. Find the directional derivative of the function xy2+ yz2 +zx2 along the tangent to the curve x =t y = t2,z = t3  at the point (1, 1, 1).

Solution:

Given

xy2+ yz2 +zx2

Here f = xy2+ yz2 + zx2

⇒ \(\begin{equation} \nabla f=\mathbf{i} \frac{\partial f}{\partial x}+\mathbf{j} \frac{\partial f}{\partial y}+\mathbf{k} \frac{\partial f}{\partial z}=\left(y^2+2 x z\right) \mathbf{i}+\left(z^2+2 x y\right) \mathbf{j}+\left(x^2+2 y z\right) \mathbf{k} \end{equation}\)

= 3 (i + j + k) at (1,1,1)

Let r be the position vector of the curve x = t1

y = t2 z = t3 , then r = t1i + t2j + t3k

⇒ \(\begin{equation} \frac{d \mathbf{r}}{d t}=\mathbf{i}+2 t \mathbf{j}+3 t^2 \mathbf{k} \end{equation}\) = (i+2j + 3k) at (1,1,1)

dr/dt is the vector along the tangent to the curve.

The unit vector along the tangent is T

⇒ \( \begin{equation} \mathbf{T}=\frac{\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}}{\sqrt{(1+4+9)}}=\frac{1}{\sqrt{14}}(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \end{equation}\)

The directional derivative along the tangent

⇒ \(\begin{equation} =\mathbf{T} \cdot \nabla f=\frac{1}{\sqrt{14}}(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \cdot 3(\mathbf{i}+\mathbf{j}+\mathbf{k})=\frac{3}{\sqrt{14}}(1+2+3)=\frac{18}{\sqrt{14}} \end{equation}\)

Example. 3. Find the directional derivative of the function f = x² – y² + 2z² at the pt P(l, 2, 3) in the direction of the line PQ where Q = (5, 0,4) 2

Solution:

Given

f = x² – y² + 2z² at the pt P(l, 2, 3) in the direction of the line PQ where Q = (5, 0,4) 2

The position vectors of P and Q with respect to the origin O are

OP =i + 2j + 3k and OQ = 5i + 4k    PQ = OQ (or)  OP = 4i- 2j + k

If e is the unit vector in the direction of PQ then e = \( \begin{equation}\frac{4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}}{\sqrt{4^2+2^2+1^2}}=\frac{1}{\sqrt{21}}(4 \mathbf{i}-2 \mathbf{j}+\mathbf{k})\end{equation}\)

Again grad f = \(\begin{equation} \mathbf{i} \frac{\partial f}{\partial x}+\mathbf{j} \frac{\partial f}{\partial y}+\mathbf{k} \frac{\partial f}{\partial z}=2 x \mathbf{i}-2 y \mathbf{j}+4 z \mathbf{k} \end{equation} \)

The directional derivative = e.∇f

⇒ \(\begin{equation} \frac{1}{\sqrt{21}}(4 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) \cdot(2 x \mathbf{i}-2 y \mathbf{j}+4 z \mathbf{k})=\frac{1}{\sqrt{21}}(8 x+4 y+4 z) \end{equation}\)

⇒ \(\begin{equation} =\frac{1}{\sqrt{21}}(8+8+12)=\frac{28}{\sqrt{21}} \text { at }(1,2,3) \end{equation}\)

Applications Of Level Surfaces In Calculus Problems

Example. 4. Find the greatest value of the directional derivative of the function f = x2y z3 at (2,1,- 1)

Solution: grad f  =2xyz3i + x2z3f + 3x2yz2k =- 4i- 4j + 12k at (2,1,-1)

Greatest value of directional derivative of f =|∇f|=\(\sqrt{16+16+144}\) \(=4 \sqrt{11}\)

Example. 5. Find the directional, derivative of Φ = x2yz + 4xz2 in the direction of vector 2i−j− 2k at (1,-2,-1)

Solution: Let Φ = x2yz + 4xz2 be the given function

Differentiating partially, we get \(\begin{equation} \frac{\partial \phi}{\partial x}=2 x y z+4 z^2, \frac{\partial \phi}{\partial y}=x^2 z, \frac{\partial \phi}{\partial z}=x^2 y+8 x z \end{equation}\)

grad Φ= ∇Φ\(=\frac{\partial \phi}{\partial x} \mathbf{i}+\frac{\partial \phi}{\partial y} \mathbf{j}+\frac{\partial \phi}{\partial z} \mathbf{k}\)  (2xyz+4z2)i+(x2z)j+x2y+8xz)k

Given vector is 2i-j-k Let e is the unit vector its direction.

⇒ \(\begin{equation}\mathbf{e}=\frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{\sqrt{4+1+4}}=\frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}\end{equation}\)

The direction derivative of Φ  in the direction of 2i- j- 2k

⇒ \(\begin{equation} =\nabla \phi \cdot \mathbf{e}=2\left(2 x y z+4 z^2\right)-\left(x^2 z\right)-2\left(x^2 y+8 x z\right) \end{equation}\)

Its value at (1,-2,-1) = 8 + 1 + 20 = 29

Differential Operators Example 6

Example. 6. Find the angle of intersection at (4,- 3,2) of spheres x2+ y2 + z2 = 29 and x2 + y2 + z2 + 4x- 6y- 8z- 47 = 0.

Solution:

Given

(4,- 3,2) of spheres x2+ y2 + z2 = 29 and x2 + y2 + z2 + 4x- 6y- 8z- 47 = 0

Let f= x2 + y2 + z2– 29

g = x2 + y2 +z2 + 4x- 6y- 8z- 47

Then grad f = 2xi + 2yj + 2zk and grad g = (2x + 4) i + (2y- 6) j + (2z- 8) k

The angle between two surfaces at a point is the angle between the normal to the surfaces at that point.

Let n1= grad f at (4,- 3, 2) = 8i- + 4k

and n2 =grad g at (4, − 3, 2) = 12i − 12j − 4k

The vectors n1 and n2 are along the normals to the two surfaces at (4,- 3, 2). If 0 is the angle between these vectors, then.

n1.n2 =|n1| |n2| cos0 ⇒  96 + 72−16 \(=\sqrt{(64+36+16)} \sqrt{(144+144+16)} \cos \theta\)

∴ cos θ\(=\frac{152}{\sqrt{(116)(304)}}\) cos-1

⇒ θ=cos-1 \(\sqrt{(19 / 29)}\)

Differential Operators In Level Surface Examples

Example: 7 Show that (1)(a.∇)Φ = a.∇Φ  (2) (a.∇) r=a

Solution:  (1) Let a= a1i+a2j+a3k, Then

a. ∇=(a1i+a2j+a3k ).\(\left(\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}\right)\)

⇒ \(=a_1 \frac{\partial}{\partial x}+a_2 \frac{\partial}{\partial y}+a_3 \frac{\partial}{\partial z}\)

⇒ \(=\sum a_1 \frac{\partial}{\partial x}\)

∴ (a.∇) Φ \(=\left(\Sigma a_1 \frac{\partial}{\partial x}\right)(\phi)\)\(=\Sigma a_1 \frac{\partial \phi}{\partial x}\)

Again a.∇ =(a1i+a2j+a3k). \(\left(\mathbf{i} \frac{\partial \phi}{\partial x}+\mathbf{j} \frac{\partial \phi}{\partial y}+\mathbf{k} \frac{\partial \phi}{\partial z}\right)\)\(=a_1 \frac{\partial \phi}{\partial x}+a_2 \frac{\partial \phi}{\partial y}+a_3 \frac{\partial \phi}{\partial z}\)

Hence (a.∇ ) Φ = a.∇Φ

(2) r=xi+yj+zk

∴\(\frac{\partial \mathbf{r}}{\partial x}=\mathbf{i}, \frac{\partial \mathbf{r}}{\partial y}=\mathbf{j}, \frac{\partial \mathbf{r}}{\partial z}=\mathbf{k}\)

∴ (a.∇) r \(=\left(\Sigma a_1 \frac{\partial}{\partial x}\right) \mathbf{r}\)

∴ \(=\Sigma a_1 \frac{\partial \mathbf{r}}{\partial x}\)= a1i+a2j+a3k =a .

 

 

Existence And Uniqueness Theorem Solved Problems

Differential Equations Introduction Solved Problems

Existence And Uniqueness Theorem Solved Problems

Example. 1: Solve : \(\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0\)

Solution.

Given equation is \(\frac{d y}{d x}+\sqrt{\frac{1-y^2}{1-x^2}}=0\)…..(1)

Separating the variables: \(\frac{d y}{\sqrt{1-y^2}}+\frac{d x}{\sqrt{1-x^2}}=0\)

⇒ \(\int \frac{d y}{\sqrt{1-y^2}}+\int \frac{d x}{\sqrt{1-x^2}}=c\) (c being arbitrary constant)

∴ The general solution of (1) is: \(\text{Sin}^{-1} y+\text{Sin}^{-1} x=c\)

Examples Of Solved Problems On Existence And Uniqueness Theorem 

Example. 2: Solve : \(y \frac{d y}{d x}=x e^{x^2+y^2}\)

Solution.

Given equation is \(y \frac{d y}{d x}=x e^{x^2} \cdot e^{y^2}\) …………………(1)

Separating the variables we have : \(x e^{x^2} d x=y e^{-y^2} d y \Rightarrow \int x e^{x^2} d x=\int y e^{-y^2} d y\)

Put \(x^2=u, y^2=t \Rightarrow 2 x d x=d u, 2 y d y=d t\)

∴ \(\frac{1}{2} \int e^u d u=\frac{1}{2} \int e^{-t} d t+\frac{c}{2} \Rightarrow e^u=-e^{-t}+c\)

∴ The general solution of (1) is \(e^{x^2}+e^{-y^2}=c\)

Application Of Existence And Uniqueness Theorem In Differential Equations

Example. 3: Solve : \(\left(\frac{d y}{d x}\right) \tan y=\sin (x+y)+\sin (x-y)\)

Solution.

Given \(\left(\frac{d y}{d x}\right) \tan y=2 \sin x \cos y\) ………………..(1)

Separating the variables : \(\frac{\tan y}{\cos y} d y=2 \sin x d x\)

=> \(\int\) sec y tan y dy = \(\int\) 2 sin x dx => \(\sec y=-2 \cos x+c\)

∴ The general solution of (1) is sec y + 2 cos x = c

Solved Examples Of Initial Value Problems Using The Existence And Uniqueness Theorem

Example. 4: Solve: \(\log \left(\frac{d y}{d x}\right)=a x+b y\)

Solution:

Given equation is \(\log \left(\frac{d y}{d x}\right)=a x+b y\) ………………………(1)

⇒ \(\frac{d y}{d x}=e^{a x+b y}=e^{a x} \cdot e^{b y} \Rightarrow e^{a x} d x=e^{-b y} d y\)

Separating the variables => \(\int e^{a x} d x=\int e^{-b y} d y+\mathrm{c} \Rightarrow \frac{e^{a x}}{a}=\frac{e^{-b y}}{-b}+\mathrm{c}\)

∴ The given solution of (1) is \(b e^{a x}+a e^{-b y}=c\)

Problems On Existence And Uniqueness Theorem With Solutions 

Example. 5: Solve : \(\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}\)

Solution:

Given equation is \(\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}\) ……………………..(1)

Separating the variables : x(2 log x +1) dx = (sin y + y cos y) dy

Integrating: \(2 \int x \log x d x+\int x d x=\int \sin y d y+\int y \cos y d y\)

⇒ \(2\left(\frac{x^2}{2} \log x-\int \frac{x^2}{2} \cdot \frac{1}{x} d x\right)+\frac{x^2}{2}=-\cos y+y \sin y-\int \sin y d y\)

⇒ \(x^2 \log x-\frac{x^2}{2}+\frac{x^2}{2}=-\cos y+y \sin y+\cos y+c \Rightarrow x^2 \log x=y \sin y+c\)

The general solution of (1) is \(x^2 \log x=y \sin y+c\)

Lipschitz Condition In Existence And Uniqueness Theorem Problems

Example. 6: Solve \(y-x \frac{d y}{d x}=a\left(y^2+\frac{d y}{d x}\right)\)

Solution:

Given equation is \(y-x \frac{d y}{d x}=a\left(y^2+\frac{d y}{d x}\right)\) ………………….(1)

⇒ \((a+x) \frac{d y}{d x}=y-a y^2\)

Separating the variables : \(\frac{1}{y-a y^2} d y=\frac{1}{a+x} d x \Rightarrow \int \frac{1}{y(1-a y)} d y=\int \frac{1}{a+x} d x+c_1\)

⇒ \(\int\left(\frac{1}{y}+\frac{a}{1-a y}\right) d y=\int \frac{1}{a+x} d x+c_1 \Rightarrow \log |y|-\log |1-a y|=\log \mid a+x \mid+\log c\)

⇒ \(\log \left|\frac{y}{1-a y}\right|=\log |c(a+x)| \Rightarrow \frac{y}{1-a y}=c(a+x)\)

∴ The general solution of (1) is y = c (a + x) (1 – ay)

Existence And Uniqueness Theorem Numerical Examples

Example. 7: Solve : \(3 e^x \tan y d x+\left(1-e^x\right) \sec ^2 y d y=0\)

Solution.

Given equation is \(3 e^x \tan y d x+\left(1-e^x\right) \sec ^2 y d y=0\) …………………..(1)

Separating the variables: \(\frac{3 e^x}{1-e^x} d x+\frac{\sec ^2 y}{\tan y} d y=0\)

⇒ \(3 \int \frac{e^x}{1-e^x} d x+\int \frac{\sec ^2 y}{\tan y} d y=\log c \quad \Rightarrow-3 \log \left|\left(1-e^x\right)\right|+\log |\tan y|=\log c\)

⇒ \(\log \left|\left(1-e^x\right)^{-3}\right|+\log |\tan y|=\log c \Rightarrow \log \left|\frac{\tan y}{\left(1-e^x\right)^3}\right|=\log c \Rightarrow \frac{\tan y}{\left(1-e^x\right)^3}=c\)

∴ The general solution of (1) is \(\tan y=c\left(1-e^x\right)^3\)

Differential Equations Problems Explained Using Existence And Uniqueness Theorem

Example. 8: Solve : \(\frac{d y}{d x}=(4 x+y+1)^2\)

Solution:

Given equation is \(\frac{d y}{d x}=(4 x+y+1)^2\)……..(1)

Let \(4 x+y+1=u \Rightarrow 4+\frac{d y}{d x}=\frac{d u}{d x} \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}-4\)…..(2)

From (1) and (2): \(\frac{d u}{d x}-4=u^2 \Rightarrow \frac{d u}{d x}=u^2+4\).

Separating the variables: \(\frac{d u}{u^2+4}=d x\)

⇒ \(\int \frac{d u}{u^2+2^2}=\int d x+\frac{c}{2} \Rightarrow \frac{1}{2} \text{Tan}^{-1}\left(\frac{u}{2}\right)\)

= \(x+\frac{c}{2} \Rightarrow \text{Tan}^{-1}\left(\frac{u}{2}\right)=2 x+c\)

u = \(2 \tan (2 x+c)\)

∴ The General solution is \(4 x+y+1=2 \tan (2 x+c)\)

(because \(u=4 \dot{x}+y+1)\)

Worked Examples On Existence And Uniqueness Theorem In Differential Equations

Example 9: Solve : \(\frac{d y}{d x}=\cos (x+y)+\sin (x+y)\)

Solution:

Given equation is \(\frac{d y}{d x}=\cos (x+y)+\sin (x+y)\) …………………..(1)

Let \(x+y=u \Rightarrow 1+\frac{d y}{d x}=\frac{d u}{d x} \Rightarrow \frac{d y}{d x}=\frac{d u}{d x}-1\) ……………………..(2)

(1)and (2) => \(\frac{d u}{d x}-1=\cos u+\sin u \Rightarrow \frac{d u}{d x}=(1+\cos u)+\sin u\)

⇒ \(\frac{d u}{d x}=2 \cos ^2 \frac{u}{2}+2 \sin \frac{u}{2} \cos \frac{u}{2}=2 \cos ^2 \frac{u}{2}\left(1+\tan \frac{u}{2}\right)\)

Separating the variables : \(\frac{d u}{2 \cos ^2(u / 2)[1+\tan (u / 2)]}=d x\)

⇒ \(\int \frac{\sec ^2(u / 2)}{2[1+\tan (u / 2)]} d u=\int d x+c \Rightarrow \log \left(1+\tan \frac{u}{2}\right)=x+c\)

∴ The General Solution is \(\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+c\)

Example. 10: solve : \(\frac{d y}{d x}-x \tan (y-x)=1\)

Solution:

Given equation is \(\frac{d y}{d x}-x \tan (\cdot y-x)=1\) …………………..(1)

Put \(y-x=z \Rightarrow \frac{d y}{d x}-1=\frac{d z}{d x} \Rightarrow \frac{d y}{d x}=\frac{d z}{d x}+1\) ……………………(2)

(1)and(2) => \(\frac{d z}{d x}+1-x \tan z=1 \Rightarrow \frac{d z}{d x}=x \tan z\)

Separating the variables: \(\frac{d z}{\tan z}=x d x \Rightarrow \int \cot z d z=\int x d x+c \Rightarrow \log |\sin z|=\frac{x^2}{2}+\frac{c}{2}\)

∴ The general solution of (1) is \(2 \log |\sin (y-x)|=x^2+c\)

Example. 11: Solve : \(\left(\frac{x+y+a}{x+y-b}\right) \frac{d y}{d x}=\frac{x+y-a}{x+y+b}\)

Solution:

Given equation is

\(\left(\frac{x+y+a}{x+y-b}\right) \frac{d y}{d x}=\frac{x+y-a}{x+y+b}\)

Put x + y = z in the given equation => \(1+\frac{d y}{d x}=\frac{d z}{d x}\)

∴ Given differential equation becomes \(\left(\frac{z+a}{z-b}\right)\left(\frac{d z}{d x}-1\right)=\frac{z-a}{z+b}\)

⇒ \(\frac{d z}{d x}=1+\frac{(z-a)(z-b)}{(z+a)(z+b)}=\frac{z^2+z(a+b)+a b+z^2-z(a+b)+a b}{(z+a)(z+b)}\)

⇒ \(\frac{d z}{d x}=\frac{2\left(z^2+a b\right)}{z^2+z(a+b)+a b}\)

Separating the variables: \(\Rightarrow \frac{z^2+z(a+b)+a b}{z^2+a b} d z=2 d x\)

⇒ \(\int\left[\frac{z^2+a b}{z^2+a b}+\frac{z(a+b)}{z^2+a b}\right] d z=\int 2 d x+c\)

⇒ \(\int d z+\frac{a+b}{2} \int \frac{2 z}{z^2+a b} d z=2 x+c \Rightarrow z+\frac{a+b}{2} \log \left|z^2+a b\right|=2 x+c\)

∴ The general solution is \(x+y+\frac{a+b}{2} \log \left|(x+y)^2+a b\right|=2 x+c\)

Example. 12: Find the equation of the curve passing through the point (1,1) whose differential equation is (y- yx) dx + (x+xy) dy = 0.

Solution :

Given equation is (y- yx) dx + (x+xy) dy = 0 => y (1 – x) dx + x (1+ y) dy =0

Separating the variables: \(\frac{1-x}{x} d x+\frac{1+y}{y} d y=0 \Rightarrow\left(\frac{1}{x}-1\right) d x+\left(\frac{1}{y}+1\right) d y=0\)

⇒ \(\int\left(\frac{1}{x}-1\right) d x+\int\left(\frac{1}{y}+1\right) d y=c \Rightarrow \log |x|-x+\log |y|+y=c\)

Given the curve passes through the point (1,1): = log 1 -1+ log 1 +1 = c => c = 0

∴ The equation of the curve passing through the point (1,1) is \(\log |x y|+y-x=0 \Rightarrow x y=e^{x-y}\)

 

Differential Operators Solved Problems Gradient Divergence Curl

Differential Operators Solved Problems

Example. 1. Prove that \( \nabla \mathrm{f}(r)\)=\(\mathbf{f}^{\prime}(r) \frac{\overline{\mathbf{r}}}{r} \) Hence prove that

  1. \(\nabla r=\frac{\overline{\mathbf{r}}}{r}\)
  2. \(\text { (2) } \nabla\left(\frac{1}{r}\right)=\frac{-\overline{\mathbf{r}}}{r^3}\)
  3. \(\text { (3) } \nabla\left(r^3\right)=3 r \overline{\mathrm{r}}\)
  4. \(\text { (4) } \overline{\mathrm{a}} \nabla\left(\frac{1}{r}\right)=\frac{-\overline{\mathbf{a}} \cdot \overline{\mathbf{r}}}{r^3}\)

Solution. \(\nabla f(r)=\sum \frac{i \delta}{\partial x}\{\vec{f}(r)\}=\sum i f^{\prime}(r) \frac{d r}{d x}=\sum i f^{\prime}(r) \frac{x}{r}=\frac{f^{\prime}(r)}{r} \sum x i\)

(1)  f(r) = r ⇒ \(\frac{f^{\prime}(r)}{r}\)=\(\frac{1}{r}\)

∴ ∇r\(=\frac{\mathbf{r}}{r}\)

(2) Taking f(r)=\(\frac{1}{r}\), We get f'(r)\(=\frac{-1}{r^2}\)

⇒\(\frac{f^{\prime}(r)}{r}\)=\(\frac{-1}{r^3}\)

∴ \(\nabla\left(\frac{1}{r}\right)\)=\(\frac{-\bar{r}}{r^3}\)

(3) f(r) =r3 ⇒ f'(r)=3r2⇒ \(\frac{f^{\prime}(r)}{r}\) = 3r ⇒∇(r3)\(=3 r \bar{r}\)

(4) Clear from (3) and (4)

Differential Operators Gradient Divergence Curl Examples

Example. 2. If a – x + y + z, b = x² + y² + z², c = xy + yz + zx; prove that [grad a, grad b, grad c] 

Solution:

Given

a- x + y + z, b = x² + y² + z², c = xy + yz + zx

a=x+y+z

∴ \(\frac{\partial a}{\partial x}=1, \frac{\partial a}{\partial y}=1, \frac{\partial a}{\partial z}=1\)

∴ \(\text{grad} a=\nabla a=\mathbf{i} \frac{\partial a}{\partial x}+\mathbf{j} \frac{\partial a}{\partial y}+\mathbf{k} \frac{\partial a}{\partial z}=\mathbf{i}+\mathbf{j}+\mathbf{k}\)

Given, \(b=x^2+y^2+z^2\)

∴ \(\frac{\partial b}{\partial x}=2 x, \frac{\partial b}{\partial y}=2 y, \frac{\partial b}{\partial z}=2 z\)

∴ \(\text{grad} b=\nabla b=\mathbf{i} \frac{\partial b}{\partial x}+\mathbf{j} \frac{\partial b}{\partial y}+\mathbf{k} \frac{\partial b}{\partial z}=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k}\)

Again, \(c=x y+y z+z x \quad \frac{\partial c}{\partial x}=y+z, \frac{\partial c}{\partial y}=z+x, \frac{\partial c}{\partial z}=x+y\)

⇒ \(\text{grad} c=\nabla c=\mathbf{i} \frac{\partial c}{\partial x}+\mathbf{j} \frac{\partial c}{\partial y}+\mathbf{k} \frac{\partial c}{\partial z}=(y+z) \mathbf{i}+(z+x) \mathbf{j}+(x+y) \mathbf{k}\)

∴ \((\text{grad} a) \cdot(\text{grad} b) \times(\text{grad} c)=\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 x & 2 y & 2 z \\
y+z & z+x & x+y
\end{array}\right|\)

On simplification \([\text{grad} a, \text{grad} b, \text{grad} c]=0\)

Example. 3. Prove that ∇ r = r/r, if r = xi + yj + zk and r =|r|

Solution: If r =xi + yj + zk then r = |r| =  \(\sqrt{\left(x^2+y^2+z^2\right)} \Rightarrow r^2=x^2+y^2+z^2 \)

⇒ \(2 r \frac{\partial r}{\partial x}=2 x, 2 r \frac{\partial r}{\partial y}=2 y, 2 r \frac{\partial r}{\partial z}=2 z\)

⇒ \(\nabla r=\mathbf{i} \frac{\partial r}{\partial x}+\mathbf{j} \frac{\partial r}{\partial y}+\mathbf{k} \frac{\partial r}{\partial z}=\frac{x \mathbf{i}}{r}+\frac{y \mathbf{j}}{r}+\frac{z \mathbf{k}}{r}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{r}=\frac{\mathbf{r}}{r} \)

Gradient Divergence Curl Detailed Examples

Example. 4. Prove that \(\nabla\left(r^n\right)=n r^{n-2} \mathbf{r}\)

Solution: r= xi+yj+zk  ;  \(r=|\mathbf{r}|=\sqrt{x^2+y^2+z^2}\)

D. W.r. to \(x \text { partially } 2 r \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r} \text {, similarly, } \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\)

⇒ \(\nabla\left(r^n\right)=\sum \mathbf{i} \frac{\partial}{\partial x}\left(r^n\right)=\sum \mathbf{i} n r^{n-1} \frac{\partial r}{\partial x}=\sum \mathbf{i} n r^{n-1} \frac{x}{r}=n r^{n-2} \sum x \mathbf{i}=n r^{n-2} \mathbf{r}\)

Differential Operators Note : from the above result, we can have

  1. \(\nabla\left(\frac{1}{r}\right)=-\frac{\mathbf{r}}{r^3} \text { taking } n=-1\)
  2. \(\nabla(r)=\frac{\mathbf{r}}{r} \text { taking } n=1\)

Example. 5. Prove that \(\nabla(\log |r|)=\frac{\mathbf{r}}{r^2} \)

Solution:  We have r= xi+yj+zk    ;  \(r=|\mathbf{r}|=\sqrt{x^2+y^2+z^2}\)

⇒\(\frac{\partial r}{\partial x}=\frac{x}{r}, \frac{\partial r}{\partial y}=\frac{y}{r}, \frac{\partial r}{\partial z}=\frac{z}{r}\)

⇒ \(\nabla(\log |r|)=\sum i \frac{\partial}{\partial x} \log |r|=\sum \mathbf{i} \frac{1}{r} \frac{\partial r}{\partial x}=\sum \mathbf{i} \frac{1}{r} \frac{x}{r}=\frac{1}{r^2} \sum x \mathbf{i}=\frac{\mathbf{r}}{r^2} \)

 

 

Substitution Of A Vector Function Continuous Magnitude Vector

Derivative Of A Vector Function Vector With Constant Magnitude

 

Theorem:1  The necessary and sufficient condition that f(t) is a vector of constant magnitude is f · df/dt= 0.

Proof : (1) The condition is necessary

Let f(t) be a vector of constant magnitude. Then f(t). f(t) = |f(t)|2 = const Differentiating w.r. to t we get

⇒ \(f \cdot \frac{d f}{d t}+\frac{d f}{d t} \cdot f=0 \Rightarrow f \cdot \frac{d f}{d t}=0\)

(2) Condition is sufficient \(\text { Let } f \cdot \frac{d f}{d t}=0 \text { then } \frac{1}{2} \frac{d}{d t}(f . f)=0 \Rightarrow \text { f.f }=\text { const. }\)

Continuous Magnitude Vector Function Properties

Derivative of a Vector Function Vectors With Direction Constant

Theorem: The necessary and sufficient condition for f(t) to have constant direction is \(\mathrm{f} \times \frac{\mathrm{df}}{\mathrm{dt}}=0 \text { Proof : Let } \mathrm{f}(t)=f(t) \mathbf{F}(t) \)

Where f(t) denotes the magnitude of f(t) and F(t), is a vector function with unit magnitude for every value of t :

Now, \(\mathbf{f}=f \mathbf{F} \quad \Rightarrow \quad \frac{d \mathbf{f}}{d t}=f \frac{d \mathbf{F}}{d t}+\frac{d f}{d t} \mathbf{F} \)

∴ \(\mathbf{f} \times \frac{d \mathbf{F}}{d t}=f \mathbf{F} \times\left(f \frac{d \mathbf{f t}}{d t}+\frac{d f}{d t} \mathbf{F}\right)=f^2 \mathbf{F} \times \frac{d \mathbf{F}}{d t}\)

∵ F × F = 0

(1) The condition is necessary

Let the direction of f be constant. Then F = const ⇒ \(\frac{d F}{d t}=0 \Rightarrow f \times \frac{d f}{d t}=0\)

(2) The condition is sufficient

Let \(\mathrm{f} \times \frac{d \mathrm{f}}{d t}=0 \text { i.e. } f^2 \mathrm{~F} \times \frac{d \mathrm{~F}}{d t}=0 \Rightarrow \mathbf{F} \times \frac{d \mathrm{~F}}{d t}=0 \quad[because f \neq 0]\)

Also F being of constant magnitude \(\mathrm{F} \cdot \frac{d \mathrm{~F}}{d t}=0\)

Hence from (1) and (2) we have \(\mathrm{F} \cdot \frac{d \mathrm{~F}}{d t}=0\) ⇒ F = constant i.e. the direction of f remains the same.

Derivative of a Vector Function Composite Vector Function

Theorem: Let s be a scalar function defined over the domain S and differentiable at t ∈ S. If f is a vector function differentiable at s(t) in the range of functions then the composite function f(s) is differentiable at t and \(f[s(t)]^{\prime}=\mathrm{f}^{\prime}[s(t)] s^{\prime}(t) \text { or } \frac{d f}{d t}=\frac{d f}{d x} \frac{d s}{d t}\)

Proof: Since f(s) and s(t) are differentiable, we have \(\frac{d \Delta}{d t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\delta s}{\delta t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\Delta(t+\delta t)-s(t)}{\delta t} \text { and } \frac{d f}{d s}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\delta \mathrm{f}}{\delta s}=\mathrm{L}_{\delta t \rightarrow 0} \frac{\mathrm{r}(t+\delta t)-\mathrm{f}(t)}{\delta t}\)

Now \({Lt}_{\delta t \rightarrow 0} \frac{\mathrm{f}[s(t+\delta t)]-\mathrm{f}[s(t)]}{\delta t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathrm{f}[s(t+\delta t)]-\mathrm{f}[a(t)]}{\lambda(t+\delta t)-s(t)} \cdot \frac{\Delta(t+\delta t)-\Delta(t)}{\delta t} .\)

= \(\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathrm{f}(s+\delta t)-\mathrm{f}(s)}{\delta t}\)

⇒ \(\mathrm{Lt}_{\delta t \rightarrow 0} \frac{s(t+\delta t)-s(t)}{d t}=\frac{d r}{d s} \cdot \frac{d a}{d t}\)

Thus f[s(t)] is differentiable at t and \(\frac{d f}{d t}=\frac{d f}{d s}-\frac{d s}{d t}\)

Understanding Continuous Magnitude In Vector Functions

Derivative of a Vector Function Velocity And Acceleration Of A Particle

If r is the position vector of a point P in space and if r(t) = x(t)i+ y(t)j +z(t)k is a function of time t, then \(\frac{d \mathbf{r}}{d t}\) will represent the velocity of the point P at any time and it is directed by v.

v = \(\frac{d \mathbf{r}}{d t}\) = velocity of P at any time

Similarly,\( \frac{d v}{d t}=\frac{d^2 r}{d t^2}\) represents the acceleration of the particle at any time and is denoted by a

a = \( \frac{d v}{d t}=\frac{d^2 r}{d t^2}\) = accelaration of P at any time.

 

Theorems For The Derivative Of A Vector Function Of A Scalar Variable Vector Higher Order Derivatives Continuity

Derivative Of A Vector Function Vector Function Of A Scalar Variable

Let S R, Corresponding to each scalar t S, there is associated a unique vector r; then r is said to be a vector (vector-valued) function. S is called the domain of r. We express it as r = f(t) where f denotes the law of correspondence.

Let i, j, k be the three mutually perpendicular unit vectors in three-dimensional space. Then the vector function f(t) may be expressed in the form r = f(t) = f1(t)i + f2(t)j + f3(t)k these f1(t), f2(t), and f3 (3) are the real-valued functions and are called the components of r.

Derivative Of A Vector Function Interval

Interval is the subset of R which can be expressed as shown below.
(a, b) = {x/x R, a < x < b} (a, b] = {x/x R, a < x b}
[a, b) = {x/x R, a x < b} (a, b) = {x/x R, a x b}
[a, ) = {x/x R, x a} (a, ) = {x/x R, x > a}
(−∞, a] = {x/x R, x a} (−∞, ) = {x/x R}

Derivative Of A Vector FunctionLimit Of A Vector Function

Let f(t) be a vector function over the domain S and a S. If there exists a vector L such that for each ε > 0, it is possible to find δ > 0 where 0 < | t a| < δ ⇒ | f(t) L| < ε then the vector L is called the limit of f(t) as t tends to a.

This is denoted as Ltt a f(t) = L.

Note. Let Lt t a A(t) = L and Ltt a B(t) = M and λ being any constant then (a) Lt t a [A(t)+ B(t)] = L+ M (b) Ltt a[λA(t)] = λL (c) Ltt 0[A(t) · B(t)] = LM (d) Ltt a[A(t) × B(t)] = L × M

Derivative Of A Vector Function Continuity Of Vector Function

Let f be a vector function on an interval I, and a I. Then f is said to be continuous at a, if Lt t a

f(t) = f(a)

The function f is said to be continuous on I if f is continuous at each point of

1. Note. If f and g are continuous then f ± g, f · g and f × g are also continuous.

Derivative Of A Vector Function Derivative

Let f be a vector function on an interval I and a I. Then \(operatorname{Lt}_{t \rightarrow a} \frac{f(t)-f(a)}{t-a}\) if it exists, it is called the derivative of f at ’ a ’ and is denoted by\( f^{\prime}(a) \text { or }\left(\frac{d r}{d t}\right)_{t=a}\)

Also, it is said that f is differentiable at t = a.

Note 1. If f is differentiable at t = a, then it is continuous at t = a.

Note 2. If f is continuous at t = a, then it need not be differentiable at that point.

Note 3. If f is differentiable on an interval I and t I then the derivative of f at t is denoted by dtf

Note 4. As in calculus of real variables, if the changes in t, f are denoted by δt and δ respectively then we have \(\frac{d I}{d t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\delta f}{\delta t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathrm{f}(t+\delta t)-\mathrm{f}(t)}{\delta t}\)

Derivative Of A Vector Function Higher Order Derivatives

Let f be differentiable on an interval I and f0 = df /dt be the derivative of f. If \(L_{t \rightarrow a} \frac{\mathrm{r}^{\prime}(t)-\mathrm{r}^{\prime}(a)}{\mathrm{t}-a}\)exists for each t I1 I, then f’ is said to be differentiable on I1.

Also, f is said to possess second derivative on I1and is denoted by f(t) or\( \frac{d^2 d^2}{x^2}\) By induction if f(n1) is differentiable on In-1In-2. . . In I then f is said to possess nth derivative on In-1 and is denoted by \(f^{(n)}(t) \text { or } \frac{d^n r}{d t^n}\)

Derivative Of A Vector Function Derivative Of Constant Vector

Theorem: Let f be a constant vector function in the interval I and a I. Then f'(a) = 0

Proof: Let f(t) = c where c is a constant vector

⇒ \(\mathrm{Lt}_{t \rightarrow a} \frac{\mathbf{f}(t)-\mathbf{f}(a)}{t-a}=operatorname{Lt}_{t \rightarrow a} \frac{\mathbf{c}-\mathbf{c}}{t-a}=\mathrm{Lt}_{t \rightarrow a} 0-0 \Rightarrow\left(\frac{d \mathbf{f}}{d t}\right)_{t=a}=\mathrm{f}^{\prime}(a)=0\)

It can be proved that f’(a) = 0 for every a I.

Theorem: Let A and B be two differentiable vector functions of scalar variable t over the domain S then \( \frac{d}{d t}(A \pm B)=\frac{d A}{d t} \pm \frac{d B}{d t}\)

Proof : Let f = \(\mathbf{A} \pm \mathbf{B}, then \mathbf{L t}_{\delta \mathrm{d} \rightarrow 0} \frac{\mathrm{f}(t+\delta t)-\mathrm{f}(t)}{\delta t}=\mathrm{Lt}_{\delta t \rightarrow a} \frac{\mathbf{A}(t+\delta t)-\mathbf{A}(t)}{\delta t} \pm\)

operator name \({Lt}_{\delta t \rightarrow a} \frac{B(t+\delta t)-B(t)}{\delta t}\)

⇒ \(\frac{d \mathbf{A}}{d t} \pm \frac{d \mathbf{B}}{d t} \)  ( ∵ A, B are differentiable at t)

f is differentiable at t and ∴ \( \frac{d}{d t}(\mathbf{A} \pm \mathbf{B})=\frac{d \mathbf{A}}{d t} \pm \frac{d \mathbf{B}}{d t}\)

Derivative Of A Vector Function Theorem 1

Let A and B be differentiable vector functions of a scalar variable to ver the domain S, then (1)

⇒ \(\left.\frac{d}{d t}(\mathrm{~A} B)=\frac{d \mathrm{~A}}{d t} \cdot \mathbf{B}+\mathbf{A} \cdot \frac{d B}{d t}(2) \frac{d}{d d}(\mathrm{~A} \times \mathrm{B}) \mathrm{B}\right)=\frac{d A}{d t} \times B+A \times \frac{d B}{d t}\)

Proof (1): ∵ A and B differentiable

⇒ \(\frac{d \mathbf{A}}{d t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathbf{A}(t+\delta t)-\mathbf{A}(t)}{\delta t} \text { and } \frac{d \mathbf{B}}{d t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathbf{B}(t+\delta t)-\mathbf{B}(t)}{\delta t}\)

Let f = A · B

⇒ \(\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathbf{f}(t+\delta t)-\mathbf{f}(t)}{\delta t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathbf{A}(t+\delta t) \cdot \mathbf{B}(t+\delta t)-\mathbf{A}(t) \cdot \mathbf{B}(t)}{\delta t}\)

⇒ \(=L_t t_{\delta t-0} \frac{\mathbf{A}(t+\delta t) \cdot[\mathbf{B}(t+\delta t)-\mathbf{B}(t)]}{\delta t}+{ }_{\delta t \rightarrow 0} \frac{[\mathbf{A}(t+\delta t)-\mathbf{A}(t)] \cdot \mathbf{B}(t)}{\delta t} =\mathbf{A} \cdot \frac{d \mathbf{B}}{d t}+\frac{d \mathbf{A}}{d t} \cdot \mathbf{B}\)

(∵A, B are differentiable and continuous at t  ).

f is differentiable at t and\( \frac{d}{d t}(\mathrm{~A} \cdot \mathrm{B})=\mathrm{A} \cdot \frac{d \mathrm{~B}}{d t}+\frac{d \mathrm{~A}}{d t} \cdot \mathbf{B}\)

Proof (2): Let g = A × B

⇒ \(therefore \mathrm{Lt}_{d t \rightarrow 0} \frac{\mathrm{g}(t+d t)-\mathrm{g}(t)}{d t}=\frac{\mathrm{A}(t+d t) \times \mathrm{B}(t+\delta t)-\mathrm{A}(t) \cdot \mathrm{B}(t)}{\delta t}\)

⇒ operator name \({Lt}_{\delta t \rightarrow 0} \frac{A(t+\delta t) \times[B(t+\delta t)-B(t)]}{\delta t}\)

⇒ \(+operatorname{Lt}_{\delta t \rightarrow 0} \frac{[A(t+\delta t)-A(t)] \times B(t)}{\delta t}=\mathbf{A} \times \frac{d B}{d t}+\frac{d \mathbf{A}}{d t} \times \mathbf{B}\)

( ∵ A, B are differentiable and continuous at t)

f is differentiable at t and\( \frac{d}{d t}(\mathrm{~A} \times \mathrm{B})=\mathbf{A} \times \frac{d \mathrm{~B}}{d t}+\frac{d \mathbf{A}}{d t} \times \mathbf{B} \)

Derivative Of A Vector Function Theorem 2

Let A, B, and C be three differentiable vector functions of scalar variable t over a domain S. Then

⇒ \(\text { (1) } \frac{d}{d t}(A B C)=\left[\frac{d A}{d t} B C\right]+\left[A \frac{d B}{d t} C\right]+\left[A B \frac{d C}{d t}\right] \)

⇒ \(\text { (2) } \frac{d}{d t}\{A \times(B \times C)\}=\frac{d A}{d t} \times(B \times C)+A \times\left(\frac{d B}{d t} \times C\right)+A \times\left(B \times \frac{d C}{d t}\right)\)

Proof : (1)  \(\frac{d}{d t}[\mathbf{A B C}]=\frac{d}{d t}[\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})]=\frac{d \mathbf{A}}{d t} \cdot(\mathbf{B} \times \mathbf{C})+\mathbf{A} \cdot \frac{d}{d t}(\mathbf{B} \times \mathbf{C}) \)

⇒ \(\left[\frac{d \mathrm{~A}}{d t} \mathrm{BC}\right]+\mathbf{A} \cdot\left(\frac{d \mathrm{~B}}{d t} \times \mathbf{C}+\mathbf{B} \times \frac{d \mathbf{C}}{d t}\right)=\left[\frac{d \mathrm{~A}}{d t} \mathbf{B C}\right]+\mathbf{A} \cdot\left(\frac{d \mathrm{~B}}{d t} \times \mathbf{C}\right)+\mathbf{A} \cdot\left(\mathbf{B} \times \frac{d \mathbf{C}}{d t}\right) \)

⇒ \(\left[\frac{d \mathrm{~A}}{d t} \mathbf{B C}\right]+\left[\mathbf{A} \frac{d \mathbf{B}}{d t} \mathbf{C}\right]+\left[\mathbf{A B} \frac{d \mathbf{C}}{d t}\right] \)

⇒ \( \text { (2) } \frac{d}{d t}\{\mathbf{A} \times(\mathbf{B} \times \mathbf{C})\}=\frac{d \mathbf{A}}{d t} \times(\mathbf{B} \times \mathbf{C})+\mathbf{A} \times \frac{d}{d t}(\mathbf{B} \times \mathbf{C})\)

⇒ \( =\frac{d \mathbf{A}}{d t} \times(\mathbf{B} \times \mathbf{C})+\mathbf{A} \times\left(\frac{d \mathbf{B}}{d t} \times \mathbf{C}+\mathbf{B} \times \frac{d \mathbf{C}}{d t}\right)\)

⇒ \(\frac{d \mathbf{A}}{d t} \times(\mathbf{B} \times \mathbf{C})+\mathbf{A} \times\left(\frac{d \mathbf{B}}{d t} \times \mathbf{C}\right)+\mathbf{A} \times\left(\mathbf{B} \times \frac{d \mathbf{C}}{d t}\right)\)

Derivative Of A Vector Function Theorem 3

Let f be a differentiable vector function and φ a scalar differentiable function on a common domain S. Then φf is differentiable on S and\(  \frac{d}{d t}(\phi f)=\phi \frac{d f}{d t}+\frac{d \phi}{d t} f\)

Proof: \({Lt}_{\delta t \rightarrow 0} \frac{\phi(t+\delta t) \mathrm{P}(t+\delta t)-\phi(t) \mathrm{r}(t)}{\delta t}\)

⇒ \(\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\phi(t+\delta t)\{\mathbf{f}(t+\delta t)-\mathbf{f}(t)\}}{\delta t}+\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\{\phi(t+\delta t)-\phi(t)\} \mathbf{f}(t)}{\delta t} \)

⇒ \(\phi(t) \frac{d}{d t}[\mathbf{f}(t)]+\frac{d}{d t}[\phi(t)] \mathbf{f}(t)\)

φf is differentiable at t and \( \frac{d}{d t}(\phi \mathrm{f})=\phi \frac{d \mathrm{f}}{d t}+\frac{d \phi}{d t} \mathrm{f}\)

Note. If f is a constant vector then \(\frac{d f}{d t}=0 \Rightarrow \frac{d}{d t}(\phi \mathrm{f})=0+\frac{d \phi}{d t} \mathrm{f}=\frac{d \phi}{d t} \mathrm{f} \)

Derivative Of A Vector Function Theorem 4

If f = f1(t)i + f2(t)j + f3(t)k, where f1(t), f2(t) and f3(t) are the cartesian components of the vector f, then \(\frac{d f}{d t}=\frac{d f}{d t} i+\frac{d f_2}{d t} j+\frac{d f_a}{d t} k \)

Proof : Given f = f1(t)i + f2(t)j + f3(t)k

⇒ \(\frac{d \mathbf{f}}{d t}=\frac{d}{d t}\left(f_1 \mathbf{i}+f_2 \mathbf{j}+f_3 \mathbf{k}\right)=\frac{d}{d t}\left(f_1 \mathbf{i}\right)+\frac{d}{d t}\left(f_2 \mathbf{j}\right)+\frac{d}{d t}\left(f_3 \mathbf{k}\right) \quad=\frac{d f_1}{d t} \mathbf{i}+\frac{d f_2}{d t} \mathbf{j}+\frac{d f_3}{d t} \mathbf{k} \)

Derivative Of A Vector Function Definition

If f1, f2, and f3 are constant functions then f = f1 i + f2j + f3k is called a constant vector function.

Derivative Of A Vector Function Theorem 5

The necessary and sufficient condition that f(t) may be a constant vector function is \(\frac{d f}{d t}=0 \text {. }\)

Proof : (1) The condition is necessary i.e. to prove \(\frac{d f}{d t}=0 \text {. }\) if f(t) is a constant vector function. Let f(t) = C

Then  \(\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathrm{r}(t+\delta t)-\mathrm{f}(t)}{\Delta t}=\mathrm{Lt}_{\delta t \rightarrow 0} \frac{\mathrm{C}-\mathrm{C}}{s t}=0 \Rightarrow \frac{d \mathrm{ft}}{d t}=0 \)

(2) The condition is sufficient

To prove f(t) is a constant vector if \(\frac{d f}{d t}=0 \text {. }\)

Let f(t) = f1(t)i + f2(t)j + f3(t)k

⇒ Therefore\(\quad \frac{d f^{\prime}}{d t}=0 \Rightarrow \frac{d f_1}{d t} \mathbf{i}+\frac{d f_2}{d t} \mathbf{j}+\frac{d f_1}{d t} \mathbf{k}=0 \Rightarrow \frac{d f_t}{d t}=0, \frac{d f_2}{d t}=0, \frac{d f_2}{d t}=0\)

⇒ f1, f2, and f3 are constant functions f(t) is a constant vector function

Derivative Of A Vector Function Theorem 6

If A is a differentiable vector function of a scalar t over a domain S then

⇒ \(\frac{d}{d t}\left(\mathrm{~A}^2\right)=2 \mathrm{~A} \cdot \frac{d \mathrm{~A}}{d t} \)

Proof: We know that A2 = A. A

⇒ Therefore\(\quad \frac{d}{d t}\left(\mathbf{A}^2\right)=\frac{d}{d t}(\mathbf{A} \cdot \mathbf{A})=\mathbf{A} \cdot \frac{d \mathbf{A}}{d t}+\frac{d \mathbf{A}}{d t} \cdot \mathbf{A}=2 \mathbf{A} \cdot \frac{d \mathbf{A}}{d t} \)

Corollary: Let r be a vector function over a domain S and r denote the value |r(t)|, then\(  \mathbf{r} \cdot \frac{d r}{d t}=r \frac{d r}{d r}\)

Proof : Since r2 = r · r = r2

⇒ Therefore \(\quad \frac{d}{d t}(\mathbf{r} \cdot \mathbf{r})=\frac{d}{d t}\left(r^2\right) \quad 2 \mathbf{r} \cdot \frac{d r}{d t}=2 r \frac{d r}{d t} \Rightarrow \bar{r} \cdot \frac{d \vec{r}}{d t}=r \frac{d r}{d t} \)

 

Differential Equations Of First Order But Not Of First Degree Solvable For p

Differential Equations Of First Order But Not Of First Degree

Differential Equations First Order But Not First Degree Solvable For P

So far we have discussed differential equations of the first order and of the first degree. In this chapter, we will discuss the differential equations of the first order in which the degree of \(\frac{d y}{d x}\) is not of the first degree. For convenience, we denote \(\frac{d y}{d x}\) by p.

An equation of form f(x,y,p)=0, where p is not of the first degree, is called a differential equation of first order and not of the first degree

An equation of the form \(p^n+P_1(x, y) p^{n-1}+\ldots \ldots \ldots+P_{n-1}(x, y) p+P_n(x, y)=0\) is called the general first order equation of degree n(>1).

These Equations Can Be Divided Into Four Types

  1. Solvable for p
  2.  Solvable for x
  3. Solvable for y
  4. Clairaut’s Equation.

 

Differential Equations of First Order But Not of First Degree Equations Solvable For p

 

Let f(x, y, p) = 0 ……………..(1) be the given equation of first order and degree_n(>1).

∴ (1) can be written as \(p^n+\mathrm{P}_1(x, y) p^{n-1}+\ldots \ldots . .+\mathrm{P}_n(x, y)=0\) ……………………(2)

If (2) is solved for p, let n solutions be \(p=f_1(x, y), p=f_2(x, y), \ldots \ldots, p=f_n(x, y)\), ……………………(3)

∴ (2) can be expressed in the form \(\left[p-f_1(x, y)\right]\left[p-f_2(x, y)\right] \ldots \ldots .\left[p-f_n(x, y)\right]=0\) ……………………..(4)

Solving each equation in (3), we get n solutions \(\) for n equations respectively.

Since \(\mathrm{F}_i\left(x, y, c_i\right)=0\) is solution to \(p=f_i(x, y)\) for each i, \(\mathrm{F}_i\left(x, y, c_i\right)=0\) is also solution of (4).

∴ The solution of (1) is \(\mathrm{F}_1\left(x, y, c_1\right) \mathrm{F}_2\left(x, y, c_2\right) \ldots \ldots \mathrm{F}_n\left(x, y, c_n\right)=0\)

Since equation (1) is of the first order, the general solution should have only one arbitrary constant.

Taking \(c_1=c_2=\ldots \ldots=c_n=c\), the general solution of (1) is \(\mathrm{F}_1(x, y, c) \mathrm{F}_2(x, y, c) \ldots \ldots \mathrm{F}_n(x, y, c)=0\)

Examples Of Differential Equations Solvable For P

Differential Equations of First Order But Not of First Degree Solved Problems

1. Solve \(p^2-5 p+6=0\)

Solution.

Given equation is \(p^2-5 p+6=0\) ………………..(1)

Solving for p => (p – 3) (p – 2) = 0

=> p = 3 ………………………..(2) and

P = 2 …………………….(3).

Solving (2) and (3), we get: \(\frac{d y}{d x}=3 \Rightarrow \int d y=3 \int d x+c \Rightarrow y=3 x+c \Rightarrow y-3 x-c=0\)

∴ \(\frac{d y}{d x}=2 \Rightarrow \int d y=2 \int d x+c \Rightarrow y=2 x+c \Rightarrow y-2 x-c=0\)

∴ The general solution of (1) is (y – 3x – c)(y – 2x – c) = 0

Solved Problems On Equations Solvable For P In Differential Equations

2. Solve \(x+y p^2=(1+x y) p\)

Solution.

Given \(x+y p^2=(1+x y) p\) ………………….(1)

Solving for \(\mathrm{p} \Rightarrow y p^2-p-x y p+x=0\)

⇒ \(p(y p-1)-x(y p-1)=0 \Rightarrow(p-x)(y p-1)=0 \Rightarrow p=x\) …………………(2)

yp -1 = 0 ……………………(3)

Solving (2) and (3): \(p=x \Rightarrow \frac{d y}{d x}=x \Rightarrow \int d y=\int x d x+c \Rightarrow y=\frac{x^2}{2}+c\)

⇒ \(2 y-x^2-2 c=0 \text { and } p=\frac{1}{y} \Rightarrow \frac{d y}{d x}=\frac{1}{y} \Rightarrow \int y d y=\int d x+c \Rightarrow\left(y^2 / 2\right)\)

= \(x+c \Rightarrow y^2-2 x-2 c=0\)

∴ The general solution of (1) is \(\left(2 y-x^2-2 c\right)\left(y^2-2 x-2 c\right)=0\)

Step-By-Step Solutions For First Order But Not First Degree Equations For P

3. Solve \(4 y^2 p^2+2 x y(3 x+1) p+3 x^3=0\)

Solution.

Given equation is \(4 y^2 p^2+2 x y(3 x+1) p+3 x^3=0\) ……………………….(1)

solving for p, we have : \(4 y^2 p^2+6 x^2 y p+2 x y p+3 x^3=0\)

⇒ \(2 y p\left(2 y p+3 x^2\right)+x\left(2 y p+3 x^2\right)=0 \quad \Rightarrow\left(2 y p+3 x^2\right)(2 y p+x)=0\)

⇒ \(p=-3 x^2 / 2 y\) ………………….(2)

p = -x/2y …………………….(3)

Solving(2): \(2 y d y=-3 x^2 d x \Rightarrow\) Integrating, \(y^2+x^3+c=0\)

Solving (3) : \(2 y d y=-x d x \Rightarrow\) Integrating, \(2 y^2+x^2+c=0\).

Thus the solutions of (2) and (3) are \(y^2+x^3+c=0 \text { and } 2 y^2+x^2+c=0\)

∴ The general solution of (1) is \(\left(y^2+x^3+c\right)\left(2 y^2+x^2+c\right)=0\)

Example. 1 Solve \(x y p^2+\left(x^2+x y+y^2\right) p+\left(x^2+x y\right)=0\)

Solution.

Given equation is \(x y p^2+\left(x^2+x y+y^2\right) p+\left(x^2+x y\right)=0\) ……………………(1)

⇒ \(x y p^2+x^2 \cdot p+x y p+x^2+y^2 p+x y=0 \Rightarrow x p(y p+x)+x(y p+x)+y(y p+x)=0\)

⇒ \((y p+x)(x p+x+y)=0 \quad \Rightarrow y p+x=0\) ……………………(2)

x p+x+y=0 ……………………..(3)

Solving (2): \(x \frac{d y}{d x}+x=0 \Rightarrow y d y+x d x=0\)

Integrating, \(y^2 / 2+x^2 / 2=c_1 \Rightarrow x^2+y^2=c\)

Solving (3): \(x \frac{d y}{d x}+x+y=0 \Rightarrow x d y+y d x+x d x=0 \Rightarrow d(x y)+x d x=0\)

Integrating: \(x y+\left(x^2 / 2\right)=c \Rightarrow 2 x y+x^2=2 c\)

Thus the solutions of (2) and (3) are \(x^2+y^2-c=0\) and \(2 x y+x^2-2 c=0\)

∴ The general solution of (1) is \(\left(x^2+y^2-c\right)\left(2 x y+x^2-2 c\right)=0\)

Applications Of Equations Solvable For p In Mathematics

Example. 2  Solve \(p^2+2 p y \cot x=y^2\)

Solution.

Given equation is \(p^2+(2 y \cot x) p=y^2\) ………………………(1)

Solving for \(p:(p+y \cot x)^2=y^2\left(1+\cot ^2 x\right)=y^2 \ cosec^2 x \Rightarrow p+y \cot x=\pm y \ cosec x\)

⇒ \((p+y \cot x+y \ cosec x)(p+y \cot x-y \ cosec x)=0\)

⇒ \( ……………………(2) and

⇒ [latex]\frac{d y}{d x}+y(\cot x-\ cosec x)=0\) …………………….(3)

In (2) and (3), variables are separable. Solving (2):

⇒ \(\frac{d y}{y}=-(\ cosec x+\cot x) d x=-\frac{1+\cos x}{\sin x} d x=-\cot (x / 2) d x\)

Integrating, \(\log y=-2 \log \sin (x / 2)+\log c \Rightarrow y=c \ cosec^2(x / 2)\)

Solving (3) : \(\frac{d y}{y}=(\ cosec x-\cot x) d x=\frac{1-\cos x}{\sin x} d x=\tan (x / 2) d x\)

Integrating, \(\log y=2 \log \sec (x / 2)+\log c \Rightarrow y=c \sec ^2(x / 2)\)

Thus the solutions of (2) and (3) are \(y-c \ cosec^2(x / 2)=0 \text { and } y-\sec ^2(x / 2)=0\)

∴ The general solution of (1) is \(\left[y-c \ cosec^2(x / 2)\right]\left[y-c \sec ^2(x / 2)\right]=0\)

Solving Non-First Degree Differential Equations For P With Examples

Example. 3  \(x^2\left(\frac{d y}{d x}\right)^2-2 x y \frac{d y}{d x}+2 y^2-x^2=0\)

Solution.

Given \(x^2 p^2-2 x y p+\left(2 y^2-x^2\right)=0 \text { where } \frac{d y}{d x}=p\) …………………….(1)

Solving (1) for p: \(\Rightarrow p=\frac{2 x y \pm \sqrt{4 x^2 y^2-4 x^2\left(2 y^2-x^2\right)}}{2 x^2}=\frac{y \pm \sqrt{x^2-y^2}}{x}\)

⇒ \(p=\frac{y+\sqrt{x^2-y^2}}{x}\) …………………….(2)

p \(=\frac{y-\sqrt{x^2-y^2}}{x}\) …………………………(3)

(2) and (3) are homogeneous equations.

Put \(y=v x \Rightarrow \frac{d y}{d x}=p=v+x \frac{d v}{d x}\) …………………….(4)

(2) and (4) \(\Rightarrow v+x \frac{d v}{d x}=\frac{v x+x \sqrt{1-v^2}}{x}=v+\sqrt{1-v^2} \Rightarrow x \frac{d v}{d x}=\sqrt{1-v^2} \Rightarrow \frac{d v}{\sqrt{1-v^2}}=\frac{d x}{x}\)

⇒ \(\int \frac{d v}{\sqrt{1-v^2}}=\int \frac{d x}{x}+\log c \Rightarrow \sin ^{-1} v=\log x+\log c=\log c x\)

The solution of (2) is \(\sin ^{-1}(y / x)-\log c x=0\)

Similarly, the solution of (3) is \(\sin ^{-1}(y / x)+\log c x=0\)

∴ The general solution of (1) is \(\left[\sin ^{-1}(y / x)-\log c x\right]\left[\sin ^{-1}(y / x)+\log c x\right]=0\)

Methods To Solve Equations Of First Order But Not First Degree Solvable For P

Example. 4  Solve \(p^3+\left(2 x-y^2\right) p^2=2 x y^2 p\)

Solution.

Given equation is \(p^3+\left(2 x-y^2\right) p^2-2 x y^2 p=0\) …………………….(1)

⇒ \(p\left[p^2+\left(2 x-y^2\right) p-2 x y^2\right]=0 \Rightarrow p\left(p^2+2 x p-y^2 p-2 x y^2\right)=0\)

⇒ \(p(p+2 x)\left(p-y^2\right)=0 \Rightarrow p=0\) ……………………(2)

p+2 x=0 …………………..(3)

∴ \(p-y^2=0\) …………………..(4)

Solving (2): \(p=0 \Rightarrow \frac{d y}{d x}=0 \Rightarrow y=c\)

Solving (3): \(\frac{d y}{d x}=-2 x \Rightarrow d y=-2 x d x \Rightarrow \int d y=-2 \int x d x+c\)

⇒ \(y=-2\left(x^2 / 2\right)+c \Rightarrow y+x^2=c\)

Solving (4) : \(\frac{d y}{y^2}=d x \Rightarrow \int \frac{d y}{y^2}=\int d x+c \Rightarrow-\frac{1}{y}=x+c \Rightarrow x y+c y+1=0\)

∴ The G.S. of (1) is \((y-c)\left(y+x^2-c\right)(x y+c y+1)=0\)

Differential Equations Solvable For P Examples And Properties

Example. 5  Solve \(p^4-(x+2 y+1) p^3+(x+2 y+2 x y) p^2-2 x y p=0\)

Solution.

Given \(p\left[p^3-(x+2 y+1) p^2+(x+2 y+2 x y) p-2 x y\right]=0\) …………………….(1)

⇒ \(p\left[p^3-(x+2 y) p^2-p^2+(x+2 y) p+2 x y p-2 x y\right]=0\)

⇒ \(p\left[\left(p^3-p^2\right)-(x+2 y) p(p-1)+2 x y(p-1)\right]=0\)

⇒ \(p(p-1)\left[p^2-(x+2 y) p+2 x y\right]=0\)

⇒ p = 0 …………………..(2)

⇒ p – 1 = 0 …………………….(3)

⇒ \(p^2-(x+2 y) p+2 x y=0\) ……………………….(4)

Solving (2) : \(\frac{d y}{d x}=0 \Rightarrow d y=0. d x \Rightarrow \int d y=0+c \Rightarrow y=c\)

Solving (3): \(p-1=0 \Rightarrow \frac{d y}{d x}=1 \Rightarrow \int d y=\int d x+c \Rightarrow y=x+c\)

Solving (4): \((p-x)(p-2 y)=0 \Rightarrow p=x, p=2 y\)

p = \(x \Rightarrow \frac{d y}{d x}=x \Rightarrow \int d y=\int x d x+c \Rightarrow y=\frac{x^2}{2}+c\)

p = \(2 y \Rightarrow \frac{d y}{d x}=2 y \Rightarrow \int \frac{d y}{y}=\int 2 d x+c \Rightarrow \log y=2 x+c \Rightarrow y=c^{2 x+c}\)

∴ The general solution of (1) is \((y-c)(y-x-c)\left(y-\frac{x^2}{2}-c\right)\left(y-e^{2 x+c}\right)=0\)

Worked on Examples Of Differential Equations Solvable For P

Example. 6  Solve \(x y p^2+p\left(3 x^2-2 y^2\right)-6 x y=0\)

Solution.

Given \(x y p^2+p\left(3 x^2-2 y^2\right)-6 x y=0\) ……………………(1)

x \(p(y p+3 x)-2 y(y p+3 x)=0 \Rightarrow(y p+3 x)(x p-2 y)=0 \Rightarrow p=2 y / x, p=-3 x / y\)

Solving: \(p=\frac{2 y}{x} \Rightarrow \frac{d y}{d x}=\frac{2 y}{x} \Rightarrow \int \frac{d y}{y}=2 \int \frac{d x}{x}+\log c\)

⇒ \(\log y=2 \log x+\log c=\log c x^2 \Rightarrow y=c x^2\)

Solving: \(p=-\frac{3 x}{y} \Rightarrow \frac{d y}{d x}=-\frac{3 x}{y} \Rightarrow \int y d y=-\int 3 x d x+c \Rightarrow \frac{y^2}{2}=-\frac{3 x^2}{2}+\frac{c}{2} \Rightarrow y^2+3 x^2=c\)

Hence the general solution of (1) is \(\left(y-c x^2\right)\left(y^2+3 x^2-c\right)=0\)

 

 

Differential Equations of First Order But Not First Degree Solvable For X

Differential Equations of First Order But Not of First Degree Differential Equations Solvable For X

 

Let f(x,y,p) = 0 be the given differential equation ……………………(1)

If equation (1) cannot be split up into rational and linear factors and (1) is of first degree in x, then (1) can be solved for x.

(1) can be expressed in the form x = F(y,p) ……………………….(2)

Differentiating (2) w.r.t. y gives an equation of the form \(\frac{1}{p}=g\left(y, p, \frac{d p}{d y}\right)\) …………………(3)

Since (3) is an equation in two variables p and y , it can be solved.

∴ The solution of (3) is \(\phi(y, p, c)=0\) …………………(4).

Eliminating p from (1) and (4), general solution of (1) is \(\psi(x, y, c)=0\).

Note 1. If it is not possible to eliminate p, then the values of x and y in terms of p in the form \(x=f_1(p, c)\) and \(y=f_2(p, c)\) together give the general solution.

2. This method is especially useful for equations y being absent.

 

Differential Equations of First Order But Not of First Degree Solved Problems

 

Example. 1. Solve \(y^2 \log y=x p y+p^2\)
Solution.

Given equation is \(y^2 \log y=x p y+p^2\) …………………………(1)

Since x is the first degree in (1), it can be solved for x. \(x=\frac{y \log y}{p}-\frac{p}{y}\) ………………………(2)

Differentiating (2) w.r.t. y: \(\frac{1}{p}=(1+\log y) \frac{1}{p}-\frac{y \log y}{p^2} \frac{d p}{d y}-\frac{1}{y} \frac{d p}{d y}+\frac{p}{y^2}\)

⇒ \(\frac{1}{p}=\frac{1}{p}+\frac{1}{\mathrm{p}} \log y+\frac{p}{y^2}-\left(\frac{y \log y}{p^2}+\frac{1}{y}\right) \frac{d p}{d y}\)

⇒ \(\frac{p}{y}\left(\frac{y \log y}{p^2}+\frac{1}{y}\right)-\left(\frac{y \log y}{p^2}+\frac{1}{y}\right) \frac{d p}{d y}=0\)

⇒ \(\left(\frac{y \log y}{p^2}+\frac{1}{y}\right)\left(\frac{p}{\mathrm{y}}-\frac{d p}{d y}\right)=0 \Rightarrow \frac{y \log y}{p^2}+\frac{1}{y}=0\) ………………………(3)

∴ \(\frac{p}{y}-\frac{d p}{d y}=0\) ……………………….(4)

(3) is discarded as it gives a singular solution

Solving(4) : \(\frac{d p}{d y}=\frac{p}{y} \Rightarrow \frac{d p}{p}=\frac{d y}{y} \Rightarrow \int \frac{d p}{p}=\int \frac{d y}{y}+\log c\)

⇒ \(\log p=\log y+\log c \Rightarrow \log p=\log c y \Rightarrow p=c y\) …………………………(5)

Eliminating p from (1) and (5): \(y^2 \log y=c x y^2+c^2 y^2 \Rightarrow \log y=c x+c^2\)

∴ The general solution of (1) is \(\log y=c x+c^2\)

Differential Equations Of First Order But Not First Degree

Example. 2. Solve \(x=y+p^2\)
Solution.

Given equation is \(x=y+p^2\) ………………………….(1)

Differentiating (1) w.r.t. \(y \Rightarrow \frac{d x}{d y}=1+2 p \frac{d p}{d y} \Rightarrow \frac{d p}{d y}=\frac{1-p}{2 p^2}\)

Separating the variables : \(d y=\frac{-2 p^2}{p-1} d p \Rightarrow \int d y=\int \frac{-2 p^2}{p-1} d p+c\)

⇒ \(y=-2 \int\left(p+1+\frac{1}{p-1}\right) d p+c \Rightarrow-2\left[\frac{1}{2} p^2+p+\log (p-1)\right]+c\) ………………………..(2)

Substituting the value of y from (2) in (1), we get: \(x=c-2[p+\log (p-1)]\) ………………………(3)

which shows that it is not possible to eliminate p from (1) and (2).

∴ The general solution of(1) is \(x=c-2[p+\log (p-1)], y=-p^2-2 p-2 \log (p-1)+c\)

Differential Equations Solvable For x Explained

Example. 3. Solve \(a y p^2+(2 x-b) p-y=0\) where p = dy / dx, a and h are real numbers.

Solution.

Given equation is \(a y p^2+(2 x-b) p-y=0\)

Since x is of first degree in (1), it can be solved for x. \(\Rightarrow 2 x=\frac{y}{p}-a y p+b\)

Differentiating w.r.t.y: \(\frac{2}{p}=\frac{1}{p} \cdot 1-\frac{y}{p^2} \frac{d p}{d y}-a\left(p+y \frac{d p}{d y}\right)\)

⇒ \(\frac{1}{p}+\frac{y}{p^2} \frac{d p}{d y}+a\left(p+y \frac{d p}{d y}\right)=0\)

⇒ \(\frac{1}{p^2}\left(p+y \frac{d p}{d y}\right)+a\left(p+y \frac{d p}{d y}\right)=0 \Rightarrow\left(p+y \frac{d p}{d y}\right)\left(\frac{1}{p^2}+a\right)=0\)

∴ \(p+y \frac{d p}{d y}=0\) ……………………..(2)

∴ \(\frac{1}{p^2}+a=0\) …………………….(3)

(3) is discarded as it gives a singular solution.

Solving (2): \(p+y \frac{d p}{d y}=0 \Rightarrow \frac{d p}{p}+\frac{d y}{y}=0\)    (separating variables)

Integrating : \(\int \frac{d p}{p}+\int \frac{d y}{y}=\log c \Rightarrow \log p+\log y=\log c\)

⇒ \(\log p y=\log c \Rightarrow p y=c \Rightarrow p=c / y\)………………….(4)

By eliminating p from (1) and (4) => \(\text { ay }\left(\frac{c^2}{y^2}\right)+(2 x-b) \frac{c}{y}-y=0\)

∴ The general solution of (1) is \(a c^2+(2 x-b) c-y^2=0\)

Examples Of Differential Equations Solvable For x 

Example. 4. Solve \(a p^2+p y-x=0\)
Solution.

Given equation is \(x=y p+a p^2\) ……………………..(1)

Differentiating (1) w.r.t.y \(\Rightarrow \frac{d x}{d y}=p+y \frac{d p}{d y}+2 a p \frac{d p}{d y}\)

⇒ \(\frac{1}{p}-p=(y+2 a p) \frac{d p}{d y} \Rightarrow \frac{d y}{d p}=\frac{p y+2 a p^2}{1-p^2}\)

⇒ \(\frac{d y}{d p}-\frac{p}{1-p^2} y=\frac{2 a p^2}{1-p^2}\) which is linear in y and p ……………………….(2)

∴ \(\text { I.F. }=\exp \left(\int \frac{-p}{1-p^2} d p\right)=\exp \left[\frac{1}{2} \log \left(1-p^2\right)\right]=\sqrt{1-p^2}\)

The general solution of (2) is \(y \sqrt{1-p^2}=2 a \int \frac{p^2}{1-p^2}, \sqrt{1-p^2} d p+c\)

⇒ \(y \sqrt{1-p^2}=2 a \int \frac{1-\left(1-p^2\right)}{\sqrt{1-p^2}} d p+c=2 a \int \frac{d p}{\sqrt{1-p^2}}-2 a \int \sqrt{1-p^2} d p+c\)

⇒ \(y \sqrt{1-p^2}=2 a \sin ^{-1} p-2 a\left[\frac{p}{2} \sqrt{1-p^2}+\frac{1}{2} \sin ^{-1} p\right]+c\)

= \(a \sin ^{-1} p-a p \sqrt{1-p^2}+c \Rightarrow y=\frac{a \sin ^{-1} p+c}{\sqrt{1-p^2}}-a p\) ……………………….(3)

By eliminating y from (1) and (3) \(\Rightarrow x=\frac{p}{\sqrt{1-p^2}}\left(a \sin ^{-1} p+c\right)\) …………………….(4)

∴ (3) and (4) together form the general solution of (1).

First-Order Equations Not Of First Degree With Solutions 

Example. 5. Solve \(\)
Solution.

Given \(p^3-4 x y p+8 y^2=0 \Rightarrow 4 x=\frac{p^2}{y}+\frac{8 y}{p}\) …………………………(1)

Differentiating (1) w.r.t.y \(\Rightarrow \frac{4}{p}=\frac{2 p}{y} \frac{d p}{d y}-\frac{p^2}{y^2}+\frac{8}{p}-\frac{8 y}{p^2} \frac{d p}{d y}\)

⇒ \(\frac{p^2}{y^2}-\frac{4}{p}=\left(\frac{2 p}{y}-\frac{8 y}{p^2}\right) \frac{d p}{d y} \Rightarrow \frac{p^3-4 y^2}{p y^2}=\frac{2\left(p^3-4 y^2\right)}{p^2 y} \frac{d p}{d y}\)

⇒ \(\left(p^3-4 y^2\right)\left(\frac{1}{y}-\frac{2}{p} \frac{d p}{d y}\right)=0 \Rightarrow p^3-4 y^2=0\) …………………….(2)

\(\frac{1}{y}-\frac{2}{p} \frac{d p}{d y}=0\) …………………….(3)

(2) is discarded as it gives a singular solution.

Solving (3): \(\frac{d y}{y}-\frac{2}{p} d p=0 \Rightarrow \int \frac{d y}{y}-2 \int \frac{d p}{p}=-\log c\)

⇒ \(\log y-2 \log p=-\log c \Rightarrow \log y+\log c=\log p^2\)

⇒ \(\log (c y)=\log p^2 \Rightarrow p^2=y c\) ………………………(4)

Eliminating p from (1) and (4): general solution of (1) is

8 \(y^2=p\left(4 x y-p^2\right)=p(4 x y-c y) \Rightarrow 64 y^4=p^2 y^2(4 x-c)^2\)

⇒ \(64 y^4=c y^3(4 x-c)^2 \Rightarrow 64 y=c(4 x-c)^2\)

Problems On First-Order Non-First-Degree Differential Equations

Example. 6. Solve \(2 p x=2 \tan y+p^3 \cos ^2 y\)

Solution.

Given equation is \(2 p x=2 \tan y+p^3 \cos ^2 y\) ……………………..(1)

Since x is of first degree in (1), it can be solved for x:

∴ \(x=\frac{\tan y}{p}+\frac{p^2 \cos ^2 y}{2}\) ……………………..(2)

Differentiating (2) w.r.t.y:

⇒ \(\frac{1}{p}=\frac{1}{p} \sec ^2 y-\frac{1}{p^2} \tan y \frac{d p}{d y}+p \cos ^2 y \frac{d p}{d y}-p^2 \sin y \cos y\)

⇒ \(\left[\frac{1}{p} \tan ^2 y-p^2 \sin y \cos y\right]+\left(p \cos ^2 y-\frac{\tan y}{p^2}\right) \frac{d p}{d y}=0\)

⇒ \(-p \tan y\left(p \cos ^2 y-\frac{\tan y}{\dot{p}^2}\right)+\left(p \cos ^2 y-\frac{\tan y}{p^2}\right) \frac{d p}{d y}=0\)

⇒ \(\left(p \cos ^2 y-\frac{\tan y}{p^2}\right)\left(\frac{d p}{d y}-p \tan y\right)=0\)

∴ \(p \cos ^2 y-\frac{\tan y}{p^2}=0\) ………………………(3)

∴ \(\frac{d p}{d y}-p \tan y=0\) ……………………..(4)

(3) is rejected as it gives a singular solution.

Solving (4): \(\frac{d p}{d y}=p \tan y \Rightarrow \frac{d p}{p}=\tan y d y\)

⇒ \(\int \frac{d p}{p}=\int \tan y d y+\log c \Rightarrow \log p=\log \sec y+\log c\)

⇒ \(\log p=\log (c \sec y) \Rightarrow p=c \sec y\) ………………………(5)

Eliminating p from (1) and (5) \(\Rightarrow 2 c x y=2 \tan y+c^3 \sec ^3 y \cos ^2 y \Rightarrow 2 c x=2 \sin y+c^3\)

∴ The general solution of (1) is \(2 c x=2 \sin y+c^3\).

 

Differential Equations of First Order But Not of First Degree Solvable For Y

Differential Equations of First Order But Not of First Degree Differential Equations Solvable For Y:

 

Let f(x, y, p) = 0 be the giiven differential equation ………………..(1)

If (1) cannot be resolved into two rational and linear factors and (1) is of first degree in y , then it can be solved for y .

(1) can be expressed in the form y = F(x,p) …………………….(2)

Differentiation of (2) w.r.t.x. gives an equation of the form \(p=g\left(x, p, \frac{d p}{d x}\right)\) ……………………(3)

Since (3) is an equation in two variables p and x, it can be solved.
The solution of (1) is ψ(x,y,c) = 0 ……………….(4)

Note 1. If it is not possible to eliminate P from (1) and (4), the general solution of (1) is given in the form (1) Φ(x, p, c) = 0, f(x,y,p) = 0 or \(x=f_1(p, c), y=f_2(p, c)\)

This is regarded as a parametric form of the required solution where p is regarded as a parameter.

2. This method is especially useful for equations in which x is absent.

 

Differential Equations of First Order But Not of First Degree Solved Problems

 

Example. 1. Solve \(y=2 p x-p^2\)
Solution.

Given equation is \(y=2 p x-p^2\) ……………………(1)

Differentiating (1) w.r.t.x => \(p=2 p+2 x \frac{d p}{d x}-2 p \frac{d p}{d x}\)

⇒ \(2(p-x) \frac{d p}{d x}=p \Rightarrow p \frac{d x}{d p}+2 x=2 p \Rightarrow \frac{d x}{d p}+\frac{2 x}{p}=2\) …………………….(2)

(2) is a linear equation in x.

Then \(\text { I.F. }=\exp \left[\int \frac{2}{p} d p\right]=\exp (2 \log p)=\exp \left(\log p^2\right)=p^2\)

∴ The general solution of (2) is x \((\mathrm{I} . \mathrm{F})=\int \mathrm{Q}(\mathrm{I} . \mathrm{F}) d p+\mathrm{c}\)     where Q = 2.

⇒ \(x p^2=\int 2 p^2 d p+c=\frac{2 p^3}{3}+c \Rightarrow x=\frac{2}{3} p+\frac{c}{p^2}\) ………………………(3)

It is not possible to eliminate p from (1) and (3)

∴ The general solution of (1) is given by two equations:

x = \((2 p / 3)+\left(c / p^2\right) \text { and } y=2 p\left(\frac{2 p}{3}+\frac{c}{p^2}\right)-p^2=\frac{p^2}{3}+\frac{2 c}{p}\)

Differential Equations Of First Order But Not First Degree Solvable For y 

Example. 2. Solve \(y=x p^2+p\)
Solution.

Given equation is \(y=x p^2+p\) …………………….(1)

Differentiating w.r.t. x => \(p=p^2+2 x p \frac{d p}{d x}+\frac{d p}{d x}\)

⇒ \(\left(p^2-p\right) \frac{d x}{d p}+2 x p+1=0 \Rightarrow \frac{d x}{d p}+\frac{2}{p-1} x=-\frac{1}{p(p-1)}\) ………………………..(2)

(2) is a linear equation in x where \(\mathrm{P}=\frac{2}{p-1}, \quad \mathrm{Q}=\frac{-1}{p(p-1)}\)

⇒ \(\int \mathrm{P} d p=\int \frac{2}{p-1} d p=2 \log (p-1)=\log (p-1)^2\)

∴ \(\text { I.F. }=e^{\log (p-1)^2}\)

∴ The general solution of (2) is \(x(\mathrm{I} . \mathrm{F})=\int \mathrm{Q}(\mathrm{I} . \mathrm{F}) d p+c \Rightarrow x(p-1)^2=\int \frac{-1}{p(p-1)}(p-1)^2 d p+c\)

⇒ \(x(p-1)^2=c-\int \frac{p-1}{p} d p=c-p+\log p\) ……………………..(3)

It is not possible to eliminate 7 from (1) and (3).

∴ The G.S. of (1) is given by \(x=(c-p+\log p)(p-1)^{-2} \text { and } y=x p^2+p\).

Examples Of Differential Equations Solvable For y

Example. 3. Solve \(y+p x=p^2 x^4\)
Solution.

Given equation is \(y+p x=p^2 x^4\) ………………………(1)

But (1) is of first degree in y and hence (1) can be solved for y.

Differentiating (1) w.r.t. x, we get \(p+p+x \frac{d p}{d x}=2 p x^4 \frac{d p}{d x}+4 p^2 x^3 \Rightarrow 2 p+\left(x-2 p x^4\right) \frac{d p}{d x}-4 p^2 x^3=0\)

⇒ \(x\left(1-2 x^3 p\right) \frac{d p}{d x}+2 p\left(1-2 x^3 p\right)=0 \Rightarrow\left(1-2 x^3 p\right)\left(x \frac{d p}{d x}+2 p\right)=0\)

⇒ \(1-2 x^3 p=0\) ………………………..(2)

x\(\frac{d p}{d x}+2 p=0\) ………………………..(3)

(2) is discarded as it gives a singular solution

Solving(3): \(x \frac{d p}{d x}+2 p=0 \Rightarrow \frac{d p}{p}+\frac{2 d x}{x}=0\)

Integrating: \(\int \frac{d p}{p}+2 \int \frac{d x}{x}=\log c \Rightarrow \log p+2 \log x=\log c\)

⇒ \(\log p+\log x^2=\log c \Rightarrow \log p x^2=\log c \Rightarrow p x^2=c \Rightarrow p=c / x^2\)

Eliminating p from (1) and (4), the general solution of (1) is \(y+(c / x)=\left(c^2 / x^4\right) x^4 \Rightarrow y+(c / x)=c^2\)

Note 1. From (2) : \(p=1 /\left(2 x^3\right)\) ………………….(5)

Eliminating p from (1) and (5)

⇒ \(y+\left(1 / 2 x^2\right)=1 /\left(4 / x^2\right) \Rightarrow y+1 /\left(4 x^2\right)=0 \Rightarrow 4 x^2 y+1=0\). which is called a singular solution since it does not contain an arbitrary constant.

2. While finding the G.S. the factor not involving \(\frac{d p}{d x}\) is discarded.

First-Order Equations Not Of First Degree Solvable For y Examples 

Example. 4. Solve \(y=2 x p+x^2 p^4\)
Solution.

Given equation is \(y=2 x p+x^2 p^4\) ………………………..(1)

Differentiating (1) w.r.t. x, we get: \(\frac{d y}{d x}=2 p+2 x \frac{d p}{d x}+2 x p^4+4 x^2 p^3 \frac{d p}{d x}\)

⇒ \(p=2 p+2 x p^4+2 x\left(1+2 x p^3\right) \frac{d p}{d x}\)

⇒ \(p\left(1+2 x p^3\right)+2 x\left(1+2 x p^3\right) \frac{d p}{d x}=0 \Rightarrow\left(1+2 x p^3\right)\left(p+2 x \frac{d p}{d x}\right)=0\)

⇒ \(1+2 x p^3=0\) …………………….(2)

p\(+2 x \frac{d p}{d x}=0\) ……………………(3)

(2) is discarded as it gives a singular solution.

Solving(3): \(p+2 x \frac{d p}{d x}=0 \Rightarrow \frac{2 d p}{p}+\frac{d x}{x}=0\)

Integrating: \(\Rightarrow 2 \int \frac{d p}{p}+\int \frac{d x}{x}=\log c \Rightarrow 2 \log p+\log x=\log c\)

⇒ \(\log p^2 x=\log c \Rightarrow p^2 x=c \Rightarrow p^2=c / x\) …………………….(4)

Eliminating p from (1) and (4) \(\Rightarrow\left(y-x^2 p^4\right)^2=4 x^2 p^2\)

∴ The general solution of (1) is \(\left[y-\left(x^2 c^2 / x^2\right)\right]^2=4 x^2(c / x) \Rightarrow\left(y-c^2\right)^2=4 c x\).

Examples Of Solvable For y Differential Equations 

Example. 5. Solve \(x p^2-2 y p+x=0\)
Solution.

Given equation is \(x p^2-2 y p+x=0\) ………………………..(1)

Differentiating (1) w.r.t. \(x \Rightarrow p^2+2 p x \frac{d p}{d x}-2 p \frac{d y}{d x}-2 y \frac{d p}{d x}+1=0\)

⇒ \(p^2+2(p x-y) \frac{d p}{d x}-2 p^2+1=0 \Rightarrow\left(1-p^2\right)+2(p x-y) \frac{d p}{d x}=0\) ………………………..(2)

Eliminating y from (1) and (2) : \(\left(1-p^2\right)+2\left(p x-\frac{x p^2+x}{2 p}\right) \frac{d p}{d x}=0\)

⇒ \(\left(1-p^2\right)+\frac{2\left(2 p^2 x-x p^2-x\right)}{2 p} \frac{d p}{d x}=0 \Rightarrow p\left(1-p^2\right)+\left(p^2-1\right) x \frac{d p}{d x}=0\)

⇒ \(\left(1-p^2\right)\left(p-x \frac{d p}{d x}\right)=0 \Rightarrow 1-p^2=0\) …………………….(3)

p\(-x \frac{d p}{d x}=0\) ………………………(4)

(3) is discarded as it does not contain \(\) and it gives the singular solution.

Solving (4) : \(p=x \frac{d p}{d x} \Rightarrow \frac{d x}{x}=\frac{d p}{p}\)

Integrating: \(\int \frac{d p}{p}=\int \frac{d x}{x}+\log c \Rightarrow \log p=\log x+\log c \Rightarrow \log p=\log c x \Rightarrow p=c x\) ……………………(5)

Eliminating p from (1) and (5): G.S.. of(1) is \(c^2 x^3-2 c x y+x=0 \Rightarrow c^2 x^2-2 c y+1=0\).

Solved Examples Of Differential Equations Solvable For y 

Example. 6. Solve \(y+x p \log p=(2+3 \log p) p^3\)
Solution.

Given equation is \(y=-x p \log p+(2+3 \log p) p^3\) ………………………..(1)

Solving for y: Differentiating (1) w.r.t. x

⇒ \(p=-p \log p-x(\log p+1) \frac{d p}{d x}+\frac{3}{p} \cdot p^3 \frac{d p}{d x}+(2+3 \log p) 3 p^2 \frac{d p}{d x}\)

⇒ \(p(1+\log p)=-x(\log p+1) \frac{d p}{d x}+9 p^2(1+\log p) \frac{d p}{d x}\)

⇒ \((1+\log p)\left[\left(-x+9 p^2\right) \frac{d p}{d x}-p\right]=0\) ……………………(2)

⇒ \(1+\log p=0\) …………………..(3)

p = \(\left(-x+9 p^2\right) \frac{d p}{d x}\) …………………..(4)

(3) is discarded as it gives the singular solution.

Solving (4): \(p \frac{d x}{d p}+x=9 p^2 \Rightarrow \frac{d x}{d p}+\frac{1}{p} x=9 p\) ……………………(5)

(5) is a linear equation in x.

∴ I.F = \(\exp \left(\int \frac{1}{p} d p\right)=e^{\log p}=p\)

The general solution of(5) is \(x_p=\int 9 p \cdot p d p+c=3 p^2+c\) ……………………..(6)

Eliminating x from (1) and (6): \(y=-\left(3 p^2+\frac{c}{p}\right) p \log p+(2+3 \log p) p^3\)

⇒ \(y=-3 p^3 \log p-c \log p+2 p^3+3 p^3 \log p=2 p^3-c \log p\) …………………….(7)

It is not possible to eliminate p from (6) and (7).

∴ The general solution of (1) is \(x=3 p^2+c p^{-1} \text { and } y=2 p^3-c \log p\)

Example. 7. Solve \(x-y p=a p^2\)
Solution.

Given equation is \(x-y p=a p^2 \Rightarrow y=\frac{x}{p}-a p\) ………………………..(1)

Differentiating (1) w.r.t x => \(\frac{d y}{d x}=p=\frac{1}{p}-\frac{x}{p^2} \frac{d p}{d x}-a \frac{d p}{d x}\)

⇒ \(\left(a p^2+x\right) \frac{d p}{d x}=p\left(1-p^2\right) \Rightarrow p\left(1-p^2\right) \frac{d x}{d p}-x=a p^2\)

⇒ \(\frac{d x}{d p}-\frac{1}{p\left(1-p^2\right)} x=\frac{a p}{1-p^2}\) is a linear equation in x ………………………….(2)

where P = \(-\frac{1}{p\left(1-p^2\right)}\) and \(\mathrm{Q}=\frac{a p}{1-p^2}\)

⇒ \(\int \mathrm{P} d p=\int \frac{1}{p\left(1-p^2\right)} d p=\int\left[\frac{1}{p}+\frac{1}{2(1-p)}-\frac{1}{2(1+p)}\right] d p\)

= \(\log p-\frac{1}{2} \log (1-p)-\frac{1}{2} \log (1+p)=\log \left(\frac{p}{\sqrt{1-p^2}}\right)\)

∴ \(\text { I.F. }=\exp \left[\int \mathrm{P} d p\right]=\exp \left[-\log \frac{p}{\sqrt{1-p^2}}\right]=\exp \left[\log \frac{\sqrt{1-p^2}}{p}\right]=\frac{\sqrt{1-p^2}}{p}\)

The general solution of (2) is \(\frac{x \sqrt{1-p^2}}{p}=\int \frac{a p}{1-p^2} \cdot \frac{\sqrt{1-p^2}}{p} d p+c\)

⇒ \(\frac{x \sqrt{1-p^2}}{p}=a \int \frac{d p}{\sqrt{1-p^2}}+c=a \sin ^{-1} p+c \Rightarrow x=\frac{p}{\sqrt{1-p^2}}\left(a \sin ^{-1} p+c\right)\) …………………….(3)

It is not possible to eliminate p from (1) and (3)

∴ The general solution of (1) is given by the two equations

y = \(x p^2+p \text { and } x=\frac{p}{\sqrt{1-p^2}}\left(a \sin ^{-1} p+c\right)\)

Example 8. Solve : \(x^2+p^2 x=y p\)
Solution.

Given equation is \(x^2+p^2 x=y p\) ……………………….(1)

Solving for y: \(y=p x+\left(x^2 / p\right)\)

Differentiating w.r.t.x : \(\frac{d y}{d x}=p=p+x \frac{d p}{d x}+\frac{p(2 x)-x^2(d p / d x)}{p^2}\)

⇒ \(x \frac{d p}{d x}+\frac{2 p x-x^2(d p / d x)}{p^2}=0 \Rightarrow p^2 x \frac{d p}{d x}+2 p x-x^2 \frac{d p}{d x}=0\)

⇒ \(x\left(p^2-x\right) \frac{d p}{d x}=-2 p x \Rightarrow\left(p^2-x\right) \frac{d p}{d x}=-2 p \Rightarrow\left(x-p^2\right) \frac{d p}{d x}=2 p \Rightarrow 2 p \frac{d x}{d p}-x=-p^2\)

⇒ \(\frac{d x}{d p}-\frac{1}{2 p} x=-\frac{p}{2}\). This is a linear equation in x. ………………………..(2)

Now I.F. = \(e^{\int-(1 / 2 p) d p}=e^{-(1 / 2) \log p}=e^{\log p^{-1 / 2}}=p^{-1 / 2}\)

∴ The general solution of (2) is \(x \cdot p^{-1 / 2}=\int-\frac{p}{2} \cdot p^{-1 / 2} d p+c\)

⇒ \(\frac{x}{\sqrt{p}}=-\frac{1}{2} \int p^{1 / 2} d p+c \Rightarrow \frac{x}{\sqrt{p}}=-\frac{1}{2} \frac{p^{3 / 2}}{3 / 2}+c=-\frac{1}{3} p^{3 / 2}+c\)

⇒ \(x=c \sqrt{p}-(1 / 3) p^2\) …………………………(3)

Substituting x from (3) in (1):

y = \(p\left(c \sqrt{p}-(1 / 3) p^2\right)+\frac{\left[c \sqrt{p}-(1 / 3) p^2\right]^2}{p}\) …………………………(4)

(3) and (4) together is the solution of (1)

 

Differential Equations of First Order But Not of First Degree Equations Homogeneous In X and Y Solved Problems And Clairaut’s Equation Solved Problems

Differential Equations of First Order But Not of First Degree Equations Homogeneous In X and Y

 

When the given equation is homogeneous in x and y it can be written as \(\mathrm{F}\left(\frac{d y}{d x}, \frac{y}{x}\right)=0\).

It is then possible to solve it for \(p=\frac{d y}{d x}\).

Differentiating with respect to x, we get \(p=f(p)+x f^{\prime}(p) \frac{d p}{d x}\) from which we can separate the variables and write \(\frac{d x}{x}=\frac{f^{\prime}(p) d p}{p-f(p)}\) and solve

 

Differential Equations of First Order But Not of First Degree Solved Problems

 

Example. 1. Solve the D.E. \(y^2+x y p-x^2 p^2=0\) which is homogeneous in x and y.
Solution.

Given equation is \(y^2+x y p-x^2 p^2=0\) …………………… (1)

Dividing(1)by \(x^2\), we have \(\frac{y^2}{x^2}+\frac{y}{x} p-p^2=0\)

⇒ \(\frac{y}{x}=\frac{-p \pm \sqrt{p^2+4 p^2}}{2}=\frac{1 \pm \sqrt{5}}{2} p \Rightarrow \frac{y}{x}=c \cdot \frac{d y}{d x}\) where c = \(\frac{-1 \pm \sqrt{5}}{2}\)

⇒ \(\frac{d x}{x}=c \cdot \frac{d y}{y}\)

∴ Integrating \(\log x=c \log y+\log c_1\) (where \(c_1\) is a constant)

⇒ \( \log x=\log \left(c_1 y^c\right) \Rightarrow x=c_1 y^c \Rightarrow x-c_1 y^c=0\)

∴ The required general solution of equation (1) is

⇒ \(\left[x-c_1 y^{\left(\frac{-1+\sqrt{5}}{2}\right)}\right]\left[x-c_1 y^{\left(\frac{-1-\sqrt{5}}{2}\right)}\right]=0\)

∴ \(c=\frac{-1 \pm \sqrt{5}}{2}\)

Differential Equations Of First Order But Not Of First Degree Examples

Example. 2. Solve \(8 y^2-4 x y p-x^2 p^2=0\)
Solution.

Given equation is \(8 y^2-4 x y p-x^2 p^2=0\)

Dividing with \(x^2, 8(y / x)^2-4(y / x) p-p^2=0\)

Solving for (y / x), we get \(\frac{y}{x}=\frac{4 p \pm \sqrt{16 p^2+32 p^2}}{2}=(2 \pm 2 \sqrt{3}) p \Rightarrow \frac{y}{x}=(2 \pm 2 \sqrt{3}) \frac{d y}{d x}\)

Separating the variables, \(\frac{d y}{y}=\frac{1}{2 \pm 2 \sqrt{3}} \cdot \frac{d x}{x}\)

Integrating on both sides,

log y \(=\frac{1}{2(1+\sqrt{3})} \log x+\log c \text { and } \log y=\frac{1}{2(1-\sqrt{3})} \log x+\log c\)

⇒ \(y=c x^{1 / 2(1+\sqrt{3})} \text { and } y=c x^{1 / 2(1-\sqrt{3})}\)

C.S. is \(\left[y-c x^{1 / 2(1+\sqrt{3})}\right]\left[y-c x^{1 / 2(1-\sqrt{3})}\right]=0\)

Solved Problems On Homogeneous Equations In x And y

Example. 3. Solve \(y=y p^2+2 p x\)
Solution.

Given equation is \(y=y p^2+2 p x \text { i.e. } y\left(1-p^2\right)=2 p x . \quad y=\frac{2 p x}{1-p^2}\) ………………………(1)

Differentiating w.r.t. x, \(\frac{2 d p}{p\left(1-p^2\right)}+\frac{d x}{x}=0\)

=> Using partial fractions, \(\left(\frac{2}{p}+\frac{1}{1-p}-\frac{1}{1+p}\right) d p+\frac{d x}{x}=0\)

Integrating, \(x=\frac{c\left(1-p^2\right)}{p^2}\) …………………………..(2)

Eliminating p between (1) and (2) we get, \(y^2=4 x c+4 c^2\) which is the required solution.

 

Differential Equations of First Order But Not of First Degree Clairaut’s Equation

The differential equation of the form y = xp + f (p) is called Clairaut’s equation.

This equation is solved by considering it as y = f(x,p), solvable for the y type.

Solution of Clairaut’s Equation :

Let the given equation be y = xp + f (p) ……………………..(1)

Differentiating (1) w.r.t. x: \(\Rightarrow \frac{d y}{d x}=x \frac{d p}{d x}+p+f^{\prime}(p) \frac{d p}{d x}\)

⇒ \(p=\left[x+f^{\prime}(p)\right] \frac{d p}{d x}+p \Rightarrow\left[x+f^{\prime}(p)\right] \frac{d p}{d x}=0\)

⇒ \(\frac{d p}{d x}=0\) ……………………(2)

x\(+f^{\prime}(p)=0\) …………………….(3)

Solving (2): \(\frac{d p}{d x}=0 \Rightarrow p=c\) where c is a real number. ………………………..(4)

Eliminating p from (1) and (4) y = cx + f(c).

∴ The general solution of Clairaut’s equation (1) is y = cx + f(c).

Note. Solving the equation (3): \(x+f^{\prime}(p)=0\) ……………………….(5)

By eliminating p from (1) and (5) we get the solution Φ (x,y) = 0.

As this solution does not contain any arbitrary constant this is not the general solution. This solution is called the singular solution of (1).

Differential Equations of First Order But Not of First Degree Working Rule for Solving Clairaut’s Equation :

 

1. The given equation can be written in the form y = xp + f(p) ………………..(a)

2. In order to find the solution of (a), replace p by c where c is any real number.

3. Putting p = c in (a), we get y = xc + f(c).

∴ The general solution of (a) is y = xc + f{c).

 

Differential Equations of First Order But Not of First Degree Solved Problems

 

Example. 1. Solve \((y-x p)(p-1)=p\)
Solution.

Given equation is \((y-x p)(p-1)=p\) …………………….(1)

⇒ \(y(p-1)-x p(p-1)=p \Rightarrow y(p-1)=x p(p-1)+p\)

⇒ \(y=x p+\frac{p}{p-1}\) which is in Clairaut’s form.

The genera] solution of (1) is \(y=x c+\frac{c}{c-1}\) where c is any real number

Example. 2. Solve \(p=\tan (x p-y)\)
Solution:

Given equation is \(p=\tan (x p-y)\)

⇒ x p-y=\text{Tan}^{-1} p \Rightarrow y=x p-\text{Tan}^{-1} p[/latex] which is in Clairaut’s form.

∴ The general solution of (1) is \(y=x c-\text{Tan}^{-1} c\) where c is any real number.

Differential Equations of First Order But Not of First Degree exercise 4(d) Solution of clairaut's example 3

Problems On First-Order But Not First-Degree Equations Homogeneous In x And y

Example. 3. Solve \(y^2-2 p x y+p^2\left(x^2-1\right)=m^2\)
Solution.

Given equation is \(y^2-2 p x y+p^2\left(x^2-1\right)=m^2\) ……………………….(1)

⇒ \(y^2-2 p x y+p^2 x^2=p^2+m^2 \Rightarrow(y-p x)^2=p^2+m^2\)

⇒ \(y-p x=\sqrt{p^2+m^2} \Rightarrow y=x p+\sqrt{p^2+m^2}\) which is in Clairaut s form.

∴ The general solution of (1) is \(y=x c+\sqrt{c^2+m^2}\)

Applications Of Clairaut’s Equation In Differential Equations.

Example. 4. Solve \(\sin p x \cos y=\cos p x \sin y+p\)
Solution.

Given equation is \(\sin p x \cos y-\cos p x \sin y=p\) …………………..(1)

⇒ \(\sin (p x-y)=p \Rightarrow p x-y=\sin ^{-1} p \Rightarrow y=p x-\sin ^{-1} p\) which is in Clairaut’s form.

∴ The general solution of (1) is \(y=c x-\sin ^{-1} c\), c being an arbitrary real number.

Solved Problems On Homogeneous Equations Of First Order Not First Degree

Example. 5. Solve \(p=\log (p x-y)\)
Solution.

Given equation is \(p=\log (p x-y)\) ……………….. (1)

⇒ \(p x-y=e^p \Rightarrow y=p x-e^p\) which is in Clairaut’s form.

∴ The general solution of (1) is \(y=c x-e^c\) where c is any real number.