Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.1

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.1

Example. 1: Solve \(x d y-y d x=x y^2 d x\)

Solution.

Given equation is \(x d y-y d x=x y^2 d x\)

Dividing (1) by \(\frac{x d y-y d x}{y^2}=x d x \Rightarrow x d x+\frac{y d x-x d y}{y^2}=0 \Rightarrow x d x+d(x / y)=0\)

Integrating : \(\frac{x^2}{2}+\frac{x}{y}=c\)

∴ The general solution (1) is \(\left(x^2 / 2\right)+(x / y)=c\)

Differential Equations Of First Order And First Degree Explained

Example. 2: Solve (1 + xy)x dy + (1 – yx)y dx = 0

Solution.

Given equation is (1 + xy)x dy + (1 -yx)y dx = 0 ……………………..(1)

⇒ x dy + y dx + (x dy – y dx) xy = 0 ……………………..(2)

Multiplying(2)with \(\frac{1}{x^2 y^2} \Rightarrow \frac{x d y+y d x}{x^2 y^2}+\frac{x d y-y d x}{x y}=0\)

⇒ \(\frac{d(x y)}{x^2 y^2}+\frac{1}{y} d y-\frac{1}{x} d x=0\)

Integrating : \(\int \frac{d(x y)}{x^2 y^2}+\int \frac{1}{y} d y-\int \frac{1}{x} d x=c \Rightarrow-\frac{1}{x y}+\log |y|-\log |x|=c\)

∴ The general solution of (1) is xy log(y/x) -1 = c xy.

Example. 3: Solve \(x d x+y d y+\frac{x d y-y d x}{x^2+y^2}=0\)

Solution:

Given equation is \(x d x+y d y+\frac{x d y-y d x}{x^2+y^2}=0\)

⇒ \(x d x+y d y+\frac{(x d y-y d x) / x^2}{1+\left(y^2 / x^2\right)}=0\)

⇒ x d x+y d y+\(\frac{d(y / x)}{1+(y / x)^2}=0 \Rightarrow d\left(\frac{x^2+y^2}{2}\right)+\frac{d(y / x)}{1+(y / x)^2}=0\)

Integrating, we get: \(\frac{x^2+y^2}{2}+\text{Tan}^{-1}\left(\frac{y}{x}\right)=c\)

∴ The general solution of (1) is \(\left(x^2+\dot{y}^2\right)+2 \text{Tan}^{-1}(y / x)=2 c\)

Methods To Find Integrating Factors In First-Order Equations

Example. 4. Solve ydx – xdy + logx dx = 00

Solution.

Given ydx – xdy + log x dx – 0 => log x dx – (xdy – ydx) = 0

Multiplying with \(\frac{1}{x^2} \Rightarrow \frac{1}{x^2} \log x d x-\frac{(x d y-y d x)}{x^2}=0 \Rightarrow \frac{1}{x^2} \log x d x-d\left(\frac{y}{x}\right)=0\)

Integrating: \(\int \frac{1}{x^2} \log x d x-\int d\left(\frac{y}{x}\right)=c \Rightarrow-\frac{1}{x} \log x-\int\left(-\frac{1}{x}\right) \cdot \frac{1}{x} d x-\frac{y}{x}=c\)

∴ The G.S. of (1) is \(c x+y+(1+\log x)=0\)

Example. 5. Solve \(x d y=\left[y+x \cos ^2(y / x)\right] d x\)

Solution.

Given equation is \(x d y=y d x+x \cos ^2(y / x) d x\) ……………………..(1)

⇒ \(x d y-y d x=x \cos ^2(y / x) d x\)

Dividing with \(x^2: \Rightarrow \frac{x d y-y d x}{x^2}=\frac{1}{x} \cos ^2\left(\frac{y}{x}\right) d x \Rightarrow \sec ^2 \frac{y}{x} \cdot \frac{x d y-y d x}{x^2}=\frac{1}{x} d x\)

⇒ \(\sec ^2\left(\frac{y}{x}\right) \cdot d\left(\frac{y}{x}\right)=\frac{1}{x} d x\)

Integrating : \(\int \sec ^2(y / x) \cdot d(y / x)=\int(1 / x) d x+c \Rightarrow \tan (y / x)=\log |x|+c\)

∴ The general solution of (1) is tan( y / x) = log|x| + c

Solved Example Problems For Exercise 2.1 In Differential Equations

Example. 6. Solve \(\left(x^2+y^2+x\right) d x-\left(2 x^2+2 y^2-y\right) d y=0\)

Solution.

Given \(\left(x^2+y^2\right) d x+x d x-2\left(x^2+y^2\right) d y+y d y=0\) ……………………(1)

Rearranging (1) : \(\left(x^2+y^2\right)(d x-2 d y)+x d x+y d y=0\)

⇒ \(d x-2 d y+\frac{x d x+y d y}{x^2+y^2}=0 \Rightarrow 2 d x-4 d y+\frac{2 x d x+2 y d y}{x^2+y^2}=0\)

⇒ \(2 d x-4 d y+d \log \left(x^2+y^2\right)=0\)

⇒ \(2 \int d x-4 \int d y+\int d \log \left(x^2+y^2\right)=c \Rightarrow 2 x-4 y+\log \left(x^2+y^2\right)=c\)

∴ The general solution of (1) is \(2 x-4 y+\log \left(x^2+y^2\right)=c\)

Example. 7. Solve \(\left(x^2+y^2-2 y\right) d y=2 x d x\)

Solution.

Given equation is

⇒ \(\left(x^2+y^2\right) d y=d\left(x^2+y^2\right) \Rightarrow d y=\frac{d\left(x^2+y^2\right)}{x^2+y^2} \Rightarrow \int d y=\int \frac{d\left(x^2+y^2\right)}{x^2+y^2}+c\)

∴ The general solution of (1) is \(y=\log \left(x^2+y^2\right)+c\)

Solutions For Exercise 2.1 First-Order Homogeneous Equations

Example. 8. Solve \(y d x-x d y+\left(1+x^2\right) d x+x^2 \sin y d y=0\)

Solution.

Given \((y d x-x d y)+\left(1+x^2\right) d x+x^2 \sin y d y=0\)

Dividing (1) by \(x^2 \Rightarrow \frac{y d x-x d y}{x^2}+\left(\frac{1}{x^2}+1\right) d x+\sin y d y=0\)

⇒ \(-\frac{x d y-y d x}{x^2}+\left(\frac{1}{x^2}+1\right) d x+\sin y d y=0 \Rightarrow-d(y / x)+\left(\frac{1}{x^2}+1\right) d x+\sin y d y=0\)

⇒  \(-\int d\left(\frac{y}{x}\right)+\int\left(\frac{1}{x^2}+1\right) d x+\int \sin y d y=c \Rightarrow-\left(\frac{y}{x}\right)-\left(\frac{1}{x}\right)+x-\cos y=c\)

∴ The general solution of (1) is \(x^2-y-1-x \cos y=c x\)

Homogeneous Differential Equations Exercise 2.1 Step-By-Step Solutions

Example. 9. Solve \(y\left(2 x^2 y+e^x\right) d x-\left(e^x+y^3\right) d y=0\)

Solution.

Given \(y\left(2 x^2 y+e^x\right) d x-\left(e^x+y^3\right) d y=0 \Rightarrow 2 x^2 y^2 d x+y e^x d x-e^x d y-y^3 d y=0\) ………………(1)

Dividing by \(y^2 \Rightarrow 2 x^2 d x+\left(\frac{y e^x d x-e^x d y}{y^2}\right)-y d y=0 \Rightarrow 2 x^2 \cdot d x+d\left(\frac{e^x}{y}\right)-y d y=0\)

Integrating : \(2 \int x^2 d x+\int d\left(\frac{e^x}{y}\right)-\int y d y=c \Rightarrow \frac{2 x^3}{3}+\frac{e^x}{y}-\frac{y^2}{2}=c\)

∴ The general solution of (1) is \(\frac{2 x^3}{3}+\frac{e^x}{y}-\frac{y^2}{2}=c\)

Example. 10. Solve \(\left(y-x y^2\right) d x-\left(x+x^2 y\right) d y=0\)

Solution.

Given \(\left(y-x y^2\right) d x-\left(x+x^2 y\right) d y=0 \ldots .(1) \Rightarrow(y d x-x d y)-x y(y d x+x d y)=0\)………………….. (2)

Dividing(2) by \(x y \Rightarrow\left(\frac{d x}{x}-\frac{d y}{y}\right)-(y d x+x d y)=0 \Rightarrow \frac{d x}{x}-\frac{d y}{y}-d(x y)=0\)

⇒ \(\int \frac{d x}{x}-\int \frac{d y}{y}-\int d(x y)=c \Rightarrow \log x-\log y-x y=c\)

∴ The general solution of (1) is \(\log (x / y)-x y=c\)

Methods For Solving Exercise 2.1 Differential Equations

Example. 11. Solve \(x d y-y d x=a\left(x^2+y^2\right) d y\)

Solution:

Given x dy-y dx = \(a\left(x^2+y^2\right) d y\)…….(1)

(1) can be written as \(\frac{x d y-y d x}{x^2+y^2}=a d y\)

⇒ \(d\left(\text{Tan}^{-1} \frac{y}{x}\right)=a d y\)

⇒ \(\int d\left(\text{Tan}^{-1} \frac{y}{x}\right)=a \int d y+c\)

⇒ \(\text{Tan}^{-1}(y / x)=a y+c\) is the general solution of (1).

Differential Equations of First Order and First Degree exercise 2(a) example 11

Examples Of Integrating Factors In Homogeneous Equations Exercise 2.1 

Example. 12. Solve \(y d x-x d y=3 x^2 e^{x^3} y^2 d x\)

Solution.

Given equation is\(y d x-x d y=3 x^2 e^{x^3} y^2 d x\) …………………….(1)

⇒ \(\frac{y d x-x d y}{y^2}=3 x^2 e^{x^3} d x \Rightarrow d\left(\frac{x}{y}\right)=3 x^2 e^{x^3} d x \Rightarrow \int d(x / y)=\int 3 x^2 e^{x^3} d x+c\)

∴ The general solution of (1) is \(x=y e^{x^3}+c y\)

 

 

 

Leave a Comment