Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.10

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.10

Example. 1: Solve \((x+1) \frac{d y}{d x}+1=e^{x-y}\). Also, find the solution for which y(0) = 0

Solution.

Given equation is \((x+1) \frac{d y}{d x}+1=e^{x-y}\) ….(1)

⇒ \(\frac{d y}{d x}+\frac{1}{x+1}=\frac{e^x \cdot e^{-y}}{x+1}\)

Multiplying with \(e^y\), we get: \(e^y \frac{d y}{d x}+\frac{1}{x+1} e^y=\frac{e^x}{x+1}\) = which is Bernoulli’s equation… (2)

Let \(e^y=u \Rightarrow e^y \frac{d y}{d x}=\frac{d u}{d x}\) ……………..(3)

(2) and (3) \(\Rightarrow \frac{d u}{d x}+\frac{1}{x+1} u=\frac{e^x}{x+1}\) which is linear in u and x …………………………(4)

where \(\mathrm{P}=\frac{1}{x+1} \text { and } \mathrm{Q}=\frac{e^x}{x+1}\)

Now \(\text { I.F. }=\exp \left(\int \frac{1}{x+1} d x\right)=e^{\log (x+1)}=x+1\)

The G.S of (4) is \(u(x+1)=\int \frac{e^x}{x+1}(x+1) d x+c=\int e^x d x+c \Rightarrow u(x+1)=e^x+c\)

∴ The general solution of (1) is \(e^y(x+1)=e^x+c\)

y(0) = 0=> value of y at (x = 0) is 0.

∴ \(e^0(0+1)=e^0+c \Rightarrow 1=1+c \Rightarrow c=0\)

The required solution when \(y(0)=0 \text { is } e^y(x+1)=e^x\)

Example. 2: Solve \(\frac{d y}{d x}+\left(2 x \text{Tan}^{-1} y-x^3\right)\left(1+y^2\right)\)=0

Solution.

Given equation is \(\frac{d y}{d x}+\left(2 x \text{Tan}^{-1} y-x^3\right)\left(1+y^2\right)=0\)………(1)

Dividing (1) by \(\left(1+y^2\right)\) and rearranging the equation:

⇒ \(\frac{1}{1+y^2} \frac{d y}{d x}+2 x \mathrm{Tan}^{-1} y=x^3\) which is Bernoulli’s equation……(2)

Let \(\text{Tan}^{-1} y=u \Rightarrow \frac{1}{1+y^2} \frac{d y}{d x}=\frac{d u}{d x}\)……….(3)

(2) and (3) ⇒ \(\frac{d u}{d x}+2 x u=x^3\) which is linear … (4) in u and x where \(\mathrm{P}=2 x\) and \(\mathrm{Q}=x^3\)

∴ I.F. \(=e^{\int 2 x d x}=e^{x^2}\).

Now the G. S. of (4) is \(u. e^{x^2}=\int x^3 e^{x^2} d x+c=\frac{1}{2} \int e^{t^t} \cdot t d t+c\)

where \(t=x^2 \Rightarrow u e^{x^2}=\frac{1}{2}\left(t e^t-e^t\right)+c\)

Substituting \(u=\text{Tan}^{-1} \quad y\) and \(t=x^2\)

The general solution of (1) is \(2 e^{x^2} \text{Tan}^{-1} y=\left(x^2-1\right) e^{x^2}+2 c\)

Example. 3: Solve \(\frac{d z}{d x}+\frac{z}{x} \log z=\frac{z}{x^2}(\log z)^2, z>0 \text { and } x>0\)

Solution.

Given \(\frac{d z}{d x}+\frac{z}{x} \log z=\frac{z}{x^2}(\log z)^2\) …………..(1)

(1) is Bernoulli’s equation. Then multiply (1) by \(z^{-1}(\log z)^{-2}\):

⇒ \(z^{-1}(\log z)^{-2} \frac{d z}{d x}+\frac{(\log z)^{-1}}{x}=\frac{1}{x^2}\) ………………(2)

Let \((\log z)^{-1}=u \Rightarrow z^{-1}(\log z)^{-2} \frac{d z}{d x}=-\frac{d u}{d x}\) ……………..(3)

(2) and (3) ⇒ \(-\frac{d u}{d x}+\frac{u}{x}=\frac{1}{x^2} \Rightarrow \frac{d u}{d x}-\frac{1}{x} u=-\frac{1}{x^2}\) ……………..(4)

(4) is a linear equation in u and x where \(\mathrm{P}=-\frac{1}{x}, \mathrm{Q}=-\frac{1}{x^2}\)

Now \(\text { I.F. }=\exp \left(\int \mathrm{P} d x\right)=\exp \left(-\frac{1}{x} d x\right)=e^{-\log x}=e^{\log x^{-1}}=\frac{1}{x}\)

The general solution of (4) is \(u\left(\frac{1}{x}\right)=\int\left(-\frac{1}{x^2}\right) \frac{1}{x} d x+c \Rightarrow u\left(\frac{1}{x}\right)=\int-x^{-3} d x+c=\frac{1}{2 x^2}+c\) ………..(5)

substitution \(u=(\log z)^{-1}\) in (5), the general solution of (1) is \(\frac{1}{x \log z}=\frac{1}{2 x^2}+c \Rightarrow 2 x=\log z+2 x^2 c \log z\)

Example. 4. Solve \(\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{a^2-x^2-y^2}{x^2+y^2}}\)

Solution:

Given

\(\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{a^2-x^2-y^2}{x^2+y^2}}\)

Let \(x=r \cos \theta\) and \(y=r \sin \theta\).

Then \(r^2=x^2+y^2, \theta=\text{Tan}^{-1}(y / x)\)

dx = \(d r \cdot \cos \theta-r \sin \theta d \theta, d y=r \cos \theta \cdot d \theta+d r \cdot \sin \theta\)

Then (1) becomes: \(\frac{r \cos \theta(\cos \theta \cdot d r-r \sin \theta d \theta)+r \sin \theta(r \cos \theta d \theta+d r \cdot \sin \theta)}{r \cos \theta(r \cos \theta d \theta+d r \cdot \sin \theta)-r \sin \theta(d r \cdot \cos \theta-r \sin \theta d \theta)}\)

= \(\sqrt{\frac{a^2-r^2}{r^2}} \Rightarrow \frac{\left(r \cos ^2 \theta+r \sin ^2 \theta\right) d r}{\left(r^2 \cos ^2 \theta+r^2 \sin ^2 \theta\right) d r}\)

= \(\sqrt{\frac{a^2-r^2}{r^2}} \Rightarrow \frac{1}{r} \frac{d r}{d \theta}=\frac{\sqrt{a^2-r^2}}{r}\)

⇒ \(\frac{d r}{\sqrt{a^2-r^2}}=d \theta \Rightarrow \sin ^{-1} \frac{r}{a}=\theta+c \Rightarrow r=a \sin (\theta+c)\)

The G.S. of (1) is \(\sqrt{x^2+y^2}=a \sin \left[\text{Tan}^{-1}\left(\frac{y}{x}\right)+c\right]\)

 

 

 

Leave a Comment