Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.3

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.3

Example. 1. Solve \(y\left(x y+2 x^2 y^2\right) d x+x\left(x y-x^2 y^2\right) dy=0\)

Solution.

Given \(y\left(x y+2 x^2 y^2\right) d x+x\left(x y-x^2 y^2\right) d y=0\) ………………….(1)

Comparing (1) with Mdx + Ndy = 0 => \(\mathrm{M}=y\left(x y+2 x^2 y^2\right), \mathrm{N}=x\left(x y-x^2 y^2\right)\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=2 x y+6 x^2 y^2, \frac{\partial \mathrm{N}}{\partial x}=2 x y-3 x^2 y^2 \Rightarrow \frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\)

(1) is not an exact equation. But (1) is of the form y f(xy) dx + x g(xy) dy = 0

Also \(\mathrm{M} x-\mathrm{N} y=x^2 y^2+2 x^3 y^3-x^2 y^3+x^3 y^3=3 x^3 y^3 \neq 0\)

∴ I.F. = \(\frac{1}{M x-N y}=\frac{1}{3 x^3 y^3}\)

Multiplying (1) by \(\frac{1}{3 x^3 y^3}\)

⇒ \(\frac{x y^2+2 x^2 y^3}{3 x^3 y^3} d x+\frac{x^2 y-x^3 y^2}{3 x^3 y^3} d y=0\) …………………(2) which of the form

where \(\mathrm{M}_1=\frac{x y^2+2 x^2 y^3}{3 x^3 y^3}=\frac{1}{3 x^2 y}+\frac{2}{3 x} \text { and } \mathrm{N}_1=\frac{x^2 y-x^3 y^2}{3 x^3 y^3}=\frac{1}{3 x y^2}-\frac{1}{3 y}\)

⇒ \(\frac{\partial \mathrm{M}_1}{\partial y}=-\frac{1}{3 x^2 y^2}, \frac{\partial \mathrm{N}_1}{\partial x}=-\frac{1}{3 x^2 y^2} \Rightarrow \frac{\partial \mathrm{M}_1}{\partial y}=\frac{\partial \mathrm{N}_1}{\partial x} \Rightarrow\) (2) is exact

Now (2) can be solved by rearranging terms: \(\frac{1}{x^2 y} d x+\frac{2}{x} d x+\frac{1}{x y^2} d y-\frac{1}{y} d y=0\)

⇒ \(\frac{y d x+x d y}{x^2 y^2}+2 \cdot \frac{1}{x} d x-\frac{1}{y} d y=0 \Rightarrow \frac{d(x y)}{x^2 y^2}+\frac{2}{x} d x-\frac{1}{y} d y=0\)

⇒ \(\int \frac{d(x y)}{(x y)^2}+2 \int \frac{1}{x} d x-\int \frac{1}{y} d y=c \Rightarrow-\frac{1}{x y}+2 \log |x|-\log |y|=c \text { is the G.S. of (1) }\)

Differential Equations Of First Order And First Degree Exercise 2.3

Example. 2. Solve \((x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0\)

Solution.

Given \((x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0\) …………………. (1)

where \(\mathrm{M}=x y^2 \sin x y+y \cos x y, \mathrm{~N}=x^2 y \sin x y-x \cos x y\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=\left(x^2 y^2+1\right) \cos x y+x y \sin x y, \frac{\partial \mathrm{N}}{\partial x}=3 x y \sin x y+\left(x^2 y^2-1\right) \cos x y\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\)

∴ (1) is not an exact equation

But (1) is of the form \(y f(x y) d x+x g(x y) d y=0\)

Also \(\mathrm{M} x-\mathrm{Ny}=x^2 y^2 \sin x y+x y \cos x y-x^2 y^2 \sin x y+x y \cos x y=2 x y \cos x y \neq 0\)

∴ I.F = \(\frac{1}{\mathrm{M} x-\mathrm{N} y}=\frac{1}{2 x y \cos x y}\)

Multiplying (1) with \(\frac{1}{(2 x y \cos x y)}\)

⇒ \(\frac{1}{2}\left(y \tan x y+\frac{1}{x}\right) d x+\frac{1}{2}\left(x \tan x y-\frac{1}{y}\right) d y=0\)……………………(2)

(2) is of the form \(\mathrm{M}_1 d x+\mathrm{N}_1 d y=0\) where \(\mathrm{M}_1=\frac{1}{2}\left(y \tan x y+\frac{1}{x}\right)\)

and \(\mathrm{N}_1=\frac{1}{2}\left(x \tan x y-\frac{1}{y}\right)\)

⇒ \(\frac{\partial \mathrm{M}_1}{\partial y}=\frac{1}{2}\left(x y \sec ^2 x y+\tan x y\right)=\frac{\partial \mathrm{N}_{\mathrm{l}}}{\partial x}\)

∴ (2) is an exact equation

∴ The general solution of (2) is \(\int^x \mathrm{M}_1 d x+\int\) ( terms of \(\mathrm{N}_1\) not containing x) dy = C

⇒ \(\int^x\left(\frac{1}{2} y \tan x y+\frac{1}{2 x}\right) d x+\int\left(-\frac{1}{2 y}\right) d y=c\)

⇒ \(\frac{1}{2} y \cdot \frac{\log |\sec x y|}{y}+\frac{1}{2} \log |x|-\frac{1}{2} \log |y|=\frac{1}{2} \log c\)

⇒ \(\log \left|\frac{x}{y} \sec x y\right|=\log c \Rightarrow x \sec x y=c y\)

Homogeneous Equations Solved Problems Exercise 2.3

Example 3. Solve \(\left(x^3 y^3+x^2 y^2+x y+1\right) y d x+\left(x^3 y^3-x^2 y^2-x y+1\right) x d y=0\)

Solution.

Given equation is of the form \(y f(x y) d x+x g(x y) d y=0\) and is not an exact equation (verify),

where M = \(x^3 y^4+x^2 y^3+x y^2+y, \mathrm{~N}=x^4 y^3-x^3 y^2-x^2 y+x\)

Also \(\mathrm{M} x-\mathrm{N} y=x^4 y^4+x^3 y^3+x^2 y^2+x y-x^4 y^4+x^3 y^3+x^2 y^2-x y\)

= \(2 x^3 y^3+2 x^2 y^2=2 x^2 y^2(x y+1) \neq 0\)

I.F = \(\frac{1}{\mathrm{M} x-\mathrm{N} y}=\frac{1}{2 x^2 y^2(x y+1)}\)

The given equation can be written as \((x y+1)\left(x^2 y^2+1\right) y d x+(x y-1)\left(x^2 y^2-1\right) x d y=0\) ……………………(1)

Multiplying(1) with \(\frac{1}{2 x^2 y^2(x y+1)} \Rightarrow \frac{x^2 y^2+1}{2 x^2 y} d x+\frac{(x y-1)^2}{2 x y^2} d y=0\) ……………………..(2)

(2) is exact (verify) where \(\mathrm{M}_1=\frac{x^2 y^2+1}{2 x^2 y}=\frac{y}{2}+\frac{1}{2 x^2 y}\)

and \(\mathrm{N}_1=\frac{(x y-1)^2}{2 x y^2}=\frac{x^2 y^2+1-2 x y}{2 x y^2}=\frac{x}{2}+\frac{1}{2 x y^2}-\frac{1}{y}\)

∴ \(\text { The G.S. of (2) is } \int^x\left(\frac{y}{2}+\frac{1}{2 x^2 y}\right) d x+\int\left(-\frac{1}{y}\right) d y=c \Rightarrow \frac{x y}{2}+\frac{1}{2 y}\left(-\frac{1}{x}\right)-\log |y|=c\)

⇒ \(x y-\frac{1}{x y}-\log y^2=2 c\)

 

 

 

Leave a Comment