Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.4

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.4

Example 1. Solve \(\left(y+\frac{y^3}{3}+\frac{x^2}{2}\right) d x+\frac{1}{4}\left(x+x y^2\right) d y=0\)

Solution:

Given \(\left(y+\frac{y^3}{3}+\frac{x^2}{2}\right) d x+\frac{1}{4}\left(x+x y^2\right) d y=0\) …………………(1)

where \(\mathrm{M}=y+\frac{y^3}{3}+\frac{x^2}{2}, \mathrm{~N}=\frac{1}{4}\left(x+x y^2\right)\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=1+y^2, \frac{\partial \mathrm{N}}{\partial x}\)

= \(\frac{1}{4}\left(1+y^2\right) \Rightarrow \frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x} \Rightarrow\) (1) is not exact

Now \(\frac{1}{\mathrm{~N}}\left(\frac{\partial \mathrm{M}}{\partial y}-\frac{\partial \mathrm{N}}{\partial x}\right)\)

= \(\frac{4}{x\left(1+y^2\right)}\left[\left(1+y^2\right)-\frac{1}{4}\left(1+y^2\right)\right]\)

= \(\frac{4}{x\left(1+y^2\right)} \cdot \frac{3}{4}\left(1+y^2\right)=\frac{3}{x}=f(x)\)

∴ I.F \(=\exp \left[\int\left(\frac{3}{x}\right) d x\right]=\exp (3 \log x)=e^{\log x^3}=x^3\)

Multiplying (1) by \(x^3 \Rightarrow\left(y+\frac{y^3}{3}+\frac{x^2}{2}\right) x^3 d x+\frac{1}{4}\left(x+x y^2\right) x^3 d y=0\) …………………(2)

Now (2) is an exact equation (verify) where \(\mathrm{M}_1=x^3 y+\frac{x^3 y^3}{3}+\frac{x^5}{2}, \mathrm{~N}_1=\frac{1}{4} x^4+\frac{1}{4} x^4 y^2\)

The general solution (2) is \(\int^x M_1 d x+\int\left(\text { terms of } \mathrm{N}_1 \text { not containing } x\right) d y=c\)

⇒ \(\int^x\left(x^3 y+\frac{1}{3} x^3 y^3+\frac{1}{2} x^5\right) d x+\int 0 d y=c_1\)

⇒ \(\frac{x^4 y}{4}+\frac{x^4 y^3}{12}+\frac{x^6}{12}=\frac{c}{12} \Rightarrow 3 x^4 y+x^4 y^3+x^6=c\)

Differential Equations Of First Order And First Degree Exercise 2.4

Example 2. Solve \(\left(x^2+y^2+2 x\right) d x+2 y d y=0\)

Solution.

Given equation is \(\left(x^2+y^2+2 x\right) d x+2 y d y=0\) ……………………..(1)

Where \(\mathrm{M}=x^2+y^2+2 x, \mathrm{~N}=2 y \Rightarrow \frac{\partial \mathrm{M}}{\partial y}=2 y, \frac{\partial \mathrm{N}}{\partial x}=0\)

Since \(\frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\), (1) is not an exact equation.

Also \(\frac{1}{\mathrm{~N}}\left(\frac{\partial \mathrm{M}}{\partial y}-\frac{\partial \mathrm{N}}{\partial x}\right)=\frac{1}{2 y}(2 y-0)=\frac{1}{2 y}(2 y)=1\) = real number

∴ I.F \(=\exp \left[\int f(x) d x\right]=\exp \left(\int 1 d x\right)=e^x\)

Multiplying(1)by \(e^x \Rightarrow\left(x^2+y^2+2 x\right) e^x d x+2 y e^x d y=0\) …………………(2)

Now (2) is an exact equation (verify) where \(\mathrm{M}_1=\left(x^2+y^2+2 x\right) e^x \text { and } \mathrm{N}_1=2 y e^x\)

∴ G.S. of (2) is \(\int^x\left(x^2+y^2+2 x\right) e^x d x+\int 0 d y=c\) (∵ no term in \(\mathrm{N}_1\) not containing x )

⇒ \(\int x^2 e^x d x+y^2 \int e^x d x+2 \int x e^x d x=c\)

⇒ \(x^2 e^x-\int 2 x e^x d x+y^2 e^x+\int 2 x e^x d x=c \Rightarrow\left(x^2+y^2\right) e^x=c\)

Note. (2) can also be solved by the rearrangement of terms.

(2) \(\Rightarrow\left(x^2+y^2\right) e^x d x+2 e^x(x d x+y d y)=0\)

⇒ \(d\left[\left(x^2+y^2\right) e^x\right]=0 \Rightarrow \int d\left[\left(x^2+y^2\right) e^x\right]=c \Rightarrow\left(x^2+y^2\right) e^x=c\)

Homogeneous Equations Solved Problems Exercise 2.4

Example.3. Solve \(2 x y d y-\left(x^2+y^2+1\right) d x=0\)

Solution.

Given equation is \(2 x y d y-\left(x^2+y^2+1\right) d x=0\) …………………….(1)

where \(\mathrm{M}=-\left(x^2+y^2+1\right) \text { and } \mathrm{N}=2 x y\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=-2 y, \frac{\partial \mathrm{N}}{\partial x}\)

= \(2 y \Rightarrow \frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\)=> (1) is not an exact equation

Also \(\frac{1}{\mathrm{~N}}\left(\frac{\partial \mathrm{M}}{\partial y}-\frac{\partial \mathrm{N}}{\partial x}\right)=\frac{1}{2 x y}(-2 y-2 y)=\frac{1}{2 x y}(-4 y)=-\frac{2}{x}=f(x)\)

∴ I.F \(=\exp \left[\int f(x) d x\right]=\exp \left[\int \frac{-2}{x} d x\right]=e^{-2 \log x}=e^{\log x^{-2}}=\frac{1}{x^2}\)

Multiplying (1) with \(\frac{1}{x^2} \Rightarrow 2 \frac{y}{x} d y-\left(1+\frac{y^2}{x^2}+\frac{1}{x^2}\right) d x=0\) ……………………(2)

Now (2) is an exact equation where \(\mathrm{M}_1=-\left(1+\frac{y^2}{x^2}+\frac{1}{x^2}\right), \mathrm{N}_1=\frac{2 y}{x}\)

∴ The general solution of (1) is \(\int^x-\left(1+\frac{y^2}{x^2}+\frac{1}{x^2}\right) d x+\int 0 d y=c\) (∵ no terms in \(\mathrm{N}_1\) free from x)

⇒ \(\int-d x+y^2 \int\left(-\frac{1}{x^2}\right) d x+\int\left(-\frac{1}{x^2}\right) d x\) = c

⇒ \(-x+y^2\left(\frac{1}{x}\right)+\frac{1}{x}=c \Rightarrow y^2-x^2+1=c x\)

 

 

 

Leave a Comment