Differential Equations Of First Order And First Degree Homogeneous Equation Methods To Find An Integrating Factor Solved Example Problems Exercise 2.6

Differential Equations of First Order and First Degree Solved Example Problems Exercise 2.6

Example. 1. Solve \(\left(y^2+2 x^2 y\right) d x+\left(2 x^3-x y\right) d y=0\)

Solution.

Given equation is \(\left(y^2+2 x^2 y\right) d x+\left(2 x^3-x y\right) d y=0\)

⇒ \(y\left(y+2 x^2\right) d x+x\left(2 x^2-y\right) d y=0\) . Let \(x^h y^k\) be the integrating factor.

Multiplying the given equation by \(x^h y^k\).

⇒ \(\left(x^h y^{k+2}+2 x^{h+2} y^{k+1}\right) d x+\left(2 x^{h+3} y^k-x^{h+1} y^{k+1}\right) d y=0\) …………………..(1)

where \(\mathrm{M}=x^h y^{k+2}+2 x^{h+2} y^{k+1}, \mathrm{~N}=2 x^{h+3} y^k-x^{h+1} y^{k+1}\)

If (1) exact , then \(\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}\)

⇒ \((k+2) x^h y^{k+1}+2(k+1) x^{h+2} y^k=-(h+1) x^h y^{k+1}+2(h+3) x^{h+2} y^k\)

Equating the coefficients of \(x^h y^{k+1} \text { and } x^{h+2} y^k\)

we get \(k+2=-(h+1), k+1=h+3 \Rightarrow h+k+3=0 ; h-k+2=0\)

Solving these equations: h = -5/2,k = -1/2.

∴ Integrating factor is [latexx^{-5 / 2} y^{-1 / 2}][/latex].

Multiplying the given equation with this I. F. we get \(\left(x^{-5 / 2} y^{3 / 2}+2 x^{-1 / 2} y^{1 / 2}\right) d x+\left(2 x^{1 / 2} y^{-1 / 2}-x^{-3 / 2} y^{1 / 2}\right) d y=0\) …………………….(2)

(2) is an exact equation where \(\mathrm{M}_1=x^{-5 / 2} y^{3 / 2}+2 x^{-1 / 2} y^{1 / 2}, \mathrm{~N}_1=2 x^{1 / 2} y^{-1 / 2}-x^{-3 / 2} y^{1 / 2}\) and \(\frac{\partial \mathrm{M}_1}{\partial y}=\frac{\partial \mathrm{N}_1}{\partial x}\) now solving (2).

⇒ \(\int \mathrm{M}_1 d x=\int\left(x^{-5 / 2} y^{3 / 2}+2 x^{-1 / 2} y^{1 / 2}\right) d x\) treating y as constant.

= \(y^{3 / 2} x^{-3 / 2}(-2 / 3)+4 x^{1 / 2} y^{1 / 2} \text { and } \int \mathrm{N}_1 d y\) = integrating the terms not having x = 0.

The required solution is \(\int \mathrm{M}_1 d x+\int \mathrm{N}_1 d y=c \Rightarrow-(2 / 3) x^{-3 / 2} y^{3 / 2}+4 x^{1 / 2} y^{1 / 2}=c\)

Differential Equations Of First Order And First Degree Exercise 2.6

Example. 2. Solve \((2 y d x+3 x d y)+2 x y(3 y d x+4 x d y)=0\)

Solution.

The given equation can be written as \(\left(2 y+6 x y^2\right) d x+\left(3 x+8 x^2 y\right) d y=0\) …………………(1)

Let \(x^h y^k\) be the integrating factor. Multiplying (1) by \(x^h y^k\) :

⇒ \(\left(2 x^h y^{k+1}+6 x^{h+1} y^{2+k}\right) d x+\left(3 x^{h+1} y^k+8 x^{h+2} y^{k+1}\right) d y=0\) ………………….(2)

(2) is an exact equation if \(\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}\) where

M\(=2 x^h y^{k+1}+6 x^{h+1} y^{2+k}, \mathrm{~N}=3 x^{h+1} y^k+8 x^{h+2} y^{k+1}\)

⇒ \(2(k+1) y^k x^h+6(k+2) y^{k+1} x^{h+1}=3(h+1) x^h y^k+8(h+2) x^{h+1} y^{k+1}\)

⇒ \(2 k+2=3 h+3,6 k+12=8 h+16 \Rightarrow 3 h-2 k+1=0,8 h-6 k+4=0\)

Solving these equations we get h=1,k=2.

∴ I.F. = xy²

Multiplying (1) with \(x y^2 \Rightarrow\left(2 x y^3+6 x^2 y^4\right) d x+\left(3 x^2 y^2+8 x^3 y^3\right) d y=0\)

where \(\dot{\mathrm{M}}_1=2 x y^3+6 x^2 y^4 \text { and } \mathrm{N}_1=3 x^2 y^2+8 x^3 y^3\)

⇒ \(\int \mathrm{M}_1 d x=\int\left(2 x y^3+6 x^2 y^4\right) d x=2\left(x^2 / 2\right) y^3+6\left(x^3 / 3\right) y^4\) treating y constant.

⇒ \(\int \mathrm{N}_1 d y\) = integrating the terms of N, not having x = 0.

∴ Solution of(1) is \(x^2 y^3+2 x^3 y^4+c=0 \Rightarrow x^2 y^3+2 x^3 y^4=c\)

Homogeneous Equations Solved Problems Exercise 2.6

3. Solve: \(\left(2 x^2 y-3 y^4\right) d x+\left(3 x^3+2 x y^3\right) d y=0\) ………………….(1)

Solution:

Given

\(\left(2 x^2 y-3 y^4\right) d x+\left(3 x^3+2 x y^3\right) d y=0\) ………………….(1)

Let \(x^a y^b\) be the integrating factor. multiplying (1) with this factor, we get :

⇒ \(\left(2 x^{a+2}+y^{b+1}-3 x^a y^{b+4}\right) d x+\left(3 x^{a+3} y^b+2 x^{a+1} y^{b+3}\right) d y=0\)

where  \(\mathrm{M}=2 x^{a+2} y^{b+1}-3 x^a y^{b+4}, \quad \mathrm{~N}=3 x^{a+3} y^b+2 x^{a+1} y^{b+3}\) …………………..(2)

For (2) to be exact: \(\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}\)

⇒ \(2(b+1) x^{a+2} y^b-3(b+4) x^a y^{b+3}=3(a+3) x^{a+2} y^b+2(a+1) x^a y^{b+3}\)

⇒ \(2(b+1)=3(a+3), 2(a+1)=-3(b+4) \Rightarrow 3 a-2 b+7=0, \quad 2 a+3 b+14=0\)

Solving for a and b: a=-49/13,b=-28/13

∴ I. F = \(x^{-49 / 13} y^{-28 / 13}\)

Multiplying (1) by \(x^{-49 / 13} y^{-28 / 13}\) we get: \(\left(2 x^2 y \cdot x^{-49 / 13} y^{-28 / 13}-3 y^4 x^{-49 / 13} y^{-28 / 13}\right) d x\)

+\(\left(3 x^3 \cdot x^{-49 / 13} y^{-28 / 13}-2 x y^3 x^{-49 / 13} y^{-28 / 15}\right) d y=0\)

⇒ \(\left(2 x^{-23 / 13} \cdot y^{-15 / 13}-3 x^{-49 / 13} \cdot y^{24 / 13}\right) d x+\left(3 x^{-10 / 13} y^{-28 / 13}+2 x^{-36 / 13} y^{11 / 13}\right) d y=0\)

where \(\mathrm{M}_1=2 x^{-23 / 13} y^{-15 / 13}-3 x^{-49 / 13} y^{24 / 13}\) and \(\mathrm{N}_1=3 x^{-10 / 13} y^{-28 / 13}+2 x^{-36 / 13} y^{11 / 13}\)

⇒ \(\int \mathrm{M}_1 d x=2 y^{-15 / 13} \frac{x^{-10 / 13}}{-10 / 13}-3 y^{24 / 13} \frac{x^{-36 / 13}}{-36 / 13}=5 x^{-36 / 13} y^{24 / 13}-12 x^{-10 / 13} y^{-15 / 13}, \mathrm{~N}_1 d y=0\)

G S. is \(5 x^{-36 / 13} y^{24 / 13}-12 x^{-10 / 13} y^{-15 / 13}=c\)

Methods To Find Integrating Factors For Exercise 2.6

Example.4. Solve \(x(4 y d x+2 x d y)+y^3(3 y d x+5 x d y)=0\)

Solution.

Given equation is \(\left(4 x y+3 y^4\right) d x+\left(2 x^2+5 x y^3\right) d y=0\) …………….(1)

verify \(\frac{\partial \mathrm{M}}{\partial y} \neq \frac{\partial \mathrm{N}}{\partial x}\) => (1) is not an exact equation.

Let \(x^a y^b\) be an integrating factor. Multiplying (1) with I.F.

⇒ \(\left(4 x^{a+1} y^{b+1}+3 x^a y^{b+4}\right) d x+\left(2 x^{a+2} y^b+5 x^{a+1} y^{b+3}\right) d y=0\) …………………(2)

where \(\mathrm{M}=4 x^{a+1} y^{b+1}+3 x^a y^{b+4}, \mathrm{~N}=2 x^{a+2} y^b+5 x^{a+1} y^{b+3}\)

⇒ \(\frac{\partial \mathrm{M}}{\partial y}=4 x^{a+1}(b+1) y^b+3(b+4) x^a y^{b+3}, \frac{\partial \mathrm{N}}{\partial x}=2(a+2) x^{a+1} \cdot y^b+5(a+1) x^a y^{b+3}\)

for(2) to be an exact, \(\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}\)

⇒ \(4(b+1) x^{a+1} y^b+3(b+4) x^a y^{b+3}=2(a+2) x^{a+1} y^b+5(a+1) x^a y^{b+3}\)

⇒ \(4(b+1)=2(a+2), 3(b+4)=5(a+1) \Rightarrow a-2 b=0,5 a-3 b-7=0\)

Solving these equation: 10b – 36 = 7 ⇒ b =1  ∴ a= 2

Multiplying (1) by \(x^2 \cdot y\); we get: \(\left(4 x^3 y^2+3 x^2 y^5\right) d x+\left(2 x^4 y+5 x^3 y^4\right) d y=0\)

Here \(\mathrm{M}_1=4 x^3 y^2+3 x^2 y^5, \mathrm{~N}_1=2 x^4 \dot{y}+5 x^3 y^4\)

⇒ \(\int M_1 d x=\int\left(4 x^3 y^2+3 x^2 y^5\right) d x=\frac{4 x^4}{4} y^2+\frac{3 x^3}{3} y^5 . \int N_1 d y=0\)

∴ GS. is \(x^4 y^2+x^3 y^5=c\)

 

 

Leave a Comment