Differential Equations of First Order But Not of First Degree Equations Reducible To Clairaut’s Form

Differential Equations of First Order But Not of First Degree Equations Reducible To Clairaut’s Form

 

Some differential equations can be transformed to Clairaut’s form by suitable substitution.

For example : \(y^2=p x y+f\left(\frac{p y}{x}\right)\) ………………….(1)

Put \(x^2=X\) and \(y^2=\mathrm{Y} \Rightarrow 2 x d x=d \mathrm{X}\) and \(2 y d y=d \mathbf{Y}\)

Let \(\mathrm{P}=\frac{d \mathrm{Y}}{d \mathrm{X}}=\frac{y}{x} \frac{d y}{d x}=\frac{y}{x} p\) …………………….(2)

(1) and (2) \(\Rightarrow \mathrm{Y}=x y\left(\frac{x \mathrm{P}}{y}\right)+f(\mathrm{P})=x^2 \mathrm{P}+f(\mathrm{P})\) …………………..(3)

=> Y = PX+f(P) which is Clairaut’s differential equation.

∴ The general solution of (3) is Y = cX+f(c) where c is any real number.

⇒ \(y^2=c x^2+f(c)\) is the general solution of (1).

 

Differential Equations of First Order But Not of First Degree Solved Problems

 

Example. 1. Solve \(x^2(y-p x)=p^2 y\)

Solution.

Given equation is \(x^2(y-p x)=y p^2\) ……………………..(1)

Put \(x^2=\mathrm{X} \text { and } y^2=\mathrm{Y} \Rightarrow 2 x d x=d \mathrm{X} \text { and } 2 y d y=d \mathrm{Y}\)

⇒ \(\mathrm{P}=\frac{d \mathrm{y}}{d \mathrm{x}}=\frac{2 y d y}{2 x d x}=\frac{y}{x} \frac{d y}{d x}=\frac{y}{x} p \Rightarrow p=\frac{\mathrm{P} x}{y}\) ……………………….(2)

(1) and (2) \(\Rightarrow \mathrm{X}\left(y-x \cdot \frac{\mathrm{P} x}{y}\right)=y \cdot \frac{\mathrm{P}^2 x^2}{y^2} \Rightarrow \mathrm{X}\left(y^2-x^2 \mathrm{P}\right)=x^2 \mathrm{P}^2\)

⇒ \(X(Y-X P)=X P^2 \Rightarrow Y-X P=P^2 \Rightarrow Y=X P+P^2\) ……………………(3)

(3) is Clairaut’s equation.

∴ General solution of (3) is \(Y=C X+C^2\)

∴ The general solution of (1) is \(y^2=C x^2+C^2\)

Differential Equations Of First Order But Not First Degree Reducible To Clairaut’s Form

Example. 2. Solve \((p y+x)(p x-y)=2 p\)

Solution.

Given equation is \((p y+x)(p x-y)=2 p\) ………………………..(1)

Put \(x^2=\mathrm{X} \text { and } y^2=\mathrm{Y} \Rightarrow 2 x d x=d \mathrm{X}, 2 y d y=d \mathrm{Y}\)

⇒ \(\mathrm{P}=\frac{d \mathrm{Y}}{d \mathrm{X}}=\frac{y}{x} \frac{d y}{d x}=\frac{y}{x} \cdot p \Rightarrow p=\frac{x}{y} \mathrm{P}\) …………………………..(2)

(1) and (2) \(\Rightarrow\left(\frac{x}{y} \mathrm{P} \cdot y+x\right)\left(\frac{x}{y} \mathrm{P}, x-y\right)=2\left(\frac{x}{y}\right) \mathrm{P}\)

⇒ \(x(\mathrm{P}+1)\left(x^2 \mathrm{P}-y^2\right)=2 x \mathrm{P} \Rightarrow(\mathrm{P}+1)\left(x^2 \mathrm{P}-y^2\right)=2 \mathrm{P}\)

⇒ \((\mathrm{P}+1)(\mathrm{XP}-\mathrm{Y})=2 \mathrm{P} \Rightarrow \mathrm{PX}-\mathrm{Y}=\frac{2 \mathrm{P}}{\mathrm{P}+1}\)

⇒ \(\mathrm{Y}=\mathrm{PX}-\frac{2 \mathrm{P}}{\mathrm{P}+1}\) is Clairaut’s equation. ………………………….(3)

The general solution of (3) is \(Y=c X-\frac{2 c}{c+1}\)

∴ The general solution of (1) is \(y^2=c x^2-\frac{2 c}{c+1}\)

Solved Problems On First-Order Non-First-Degree Reducible To Clairaut’s Form

Example. 3. Use the transformation \(u=x^2\) and \(v=y^2\) to solve \(a x y p^2+\left(x^2-a y^2-b\right) p-x y=0\).

Solution.

Given: \(a x y p^2+\left(x^2-a y^2-b\right) p-x y=0\).

Put \(x^2=u\) and \(y^2=v \Rightarrow 2 x dx=du, 2y dy=d v\)

⇒ \(\mathrm{P}=\frac{d v}{d x}=\frac{y}{x} \frac{d y}{d x}=\frac{y}{x} p \Rightarrow p=\frac{x}{y} \mathrm{P}\)

(1) and (2) ⇒ \(a x y\left(\frac{x^2}{y^2}\right) \mathrm{P}^2+\left(x^2-a y^2-b\right) \frac{x}{y} \mathrm{P}-x y=0\)

⇒ \(a x^2 \mathrm{P}^2+\left(x^2-a y^2-b\right) \mathrm{P}-y^2=0 \Rightarrow a u \mathrm{P}^2+(u-a v-b) \mathrm{P}-v=0\)

⇒ \(a u \mathrm{P}^2+u \mathrm{P}-a v \mathrm{P}-b \mathrm{P}-v=0 \Rightarrow u \mathrm{P}(a \mathrm{P}+1)-v(a \mathrm{P}+1)-b \mathrm{P}=0\)

⇒ \(v(a \mathrm{P}+1)=u \mathrm{P}(a \mathrm{P}+1)-b \mathrm{P} \Rightarrow v=u \mathrm{P}-\frac{b \mathrm{P}}{a \mathrm{P}+1} \ldots \ldots\) (3) is in Clairaut’s form.

The general solution of (3) is \(v=u \mathrm{C}-\frac{b \mathrm{C}}{a \mathrm{C}+1}\)

∴ The general solution of (1) is \(y^2=x^2 \mathrm{C}-\frac{b \mathrm{C}}{a \mathrm{C}+1}\)

Problems On Equations Reducible To Clairaut’s Form

Example. 4. Reduce the equation \(y^2(y-x p)=x^4 p^2\) to Clairaut’s form by the substitution \(x=1 / u, y=1 / v\) and hence solve the equation.
Solution.

Given equation is \(y^2(y-x p)=x^4 p^2\) ………………………(1)

Also given \(x=1 / u \text { and } y=1 / v \Rightarrow d x=-\frac{1}{u^2} d u, d y=-\frac{1}{v^2} d v\)

⇒ \(\frac{d y}{d x}=\frac{u^2}{v^2} \frac{d v}{d u} \Rightarrow p=\frac{u^2}{v^2} \mathrm{P}\) where \(\mathrm{P}=\frac{d v}{d u}, p=\frac{d y}{d x}\) ……………………..(2)

(1) and (2) \(\Rightarrow \frac{1}{v^2} \cdot\left(\frac{1}{v}-\frac{1}{u} \cdot \frac{u^2}{v^2} \mathrm{P}\right)=\frac{1}{u^4} \cdot \frac{u^4}{v^4} \mathrm{P}^2\)

⇒ \(\frac{1}{v^4}(v-u p)=\frac{\mathrm{P}^2}{v^4} \Rightarrow v-u \mathrm{P}=\mathrm{P}^2 \Rightarrow v=u \mathrm{P}+\mathrm{P}^2\) ……………………..(3)

The general solution of (3) is \(v=u c+c^2\)

Hence the general solution of (1) is \(\frac{1}{y}=\frac{1}{x} c+c^2 \Rightarrow x=c y+c^2 y x\)

 

Leave a Comment